Fin System, Inc.
Company Report

Temperature Profile Calculators

Team 1
J. C. Stewards, Lead
A. B. Williams, Documentation

M. D. Daily, Programmer

Submitted in Fulfillment of Management Requirements
August 26, 2018

Definition and Information

The company Fin Systems, Inc. produces rectangular extensions as heat transfer conduits between
two temperature baths characteristically at 7, and 77. The fins have different sizes by width w,
measured thickness t,,, and length between baths L. They are made of different materials with
thermal conductivities k and are used in different external conditions of temperature 7., and con-
vection coefficient 2. The company has two pressing needs. First, they want a way to predict
the behavior of an extension when all operating conditions are specified. In particle, they want
to produce a graph of the temperature profile is along the entire extension. Secondly, they want a
function that will allow their field engineers to confirm the operation of the extension. In particular,
given all the input conditions, they want a field engineer to be able to measure the temperature 7

at certain distances x along the extension and compare it with expectations.
Provide the code to solve the problems. Test it for input parameters below.

geometry: L=1m, t,, = 1 mm, w =50 cm
temperatures: 7, = 100 °C, T.. = 20 °C, T, =30 °C
material and conditions: k = 400 W/m °C, h = 10 W/m? °C

Proposed Approach

The temperature profile along an extension with fixed end temperatures is given by

exp(mx) — exp(—mx)
= - —mL _
® = (0O —exp(—mL)) (exp(mL) exp(—mL) + exp(—mx)
with the following definitions:
O=(T-T.)/(T,—T.) m? = hP/kA where P = 2(t,, +w) and A = t,,w

The first demand can be met by creating a function that will graph ® versus x/L given all inputs.

The second demand can be met by creating a function that will return 7' given all inputs.

Results - Igor Pro

The plotting function has this format
plot_ThetavsZL(L, tm, w, h, k, thetal)

The inputs a fin length, measured thickness, width, convection coefficient, thermal conduction

coefficient, and relative temperature at the end. It produces a plot titled with the value of m and 6.

A plot of @ versus x/L is provided in Figure 1 for the conditions specified. In this case, @ =
(30 —20)/(100 —20) = 0.125. The function call from the command line was

plot_ThetavsZL(1, 0.001, 0.5, 10, 400, 0.125)

The calculation function has this format

calc_Tofz(L, tm, w, h, k, z, To, Tinf, TL)

It returns the value of T for the input conditions. A test result from the command line gives

print calc_Tofz(1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30) -> 21.73

_ QO
Ve
cm
LI_N
c -
— O 00
L - o
J= 00
0530.
c
~ S
=
L © g
© a
n
n
Q
c
O
< O
£
o
N
o
| O
| I I I I I o
o S © \J N o
— o o o o o

aJniesadwa | ssajuoisuawi(

Figure 1: Plot of dimensionless temperature versus dimensionless distance using Igor Pro. Speci-

fications and the approach used are given in the text. Values for (m,®p) are given on the plot.

Code - Igor Pro

The code was generated in Igor Pro (WaveMetrics, Inc) version 7.08. The functions are docu-

mented in line.

// Temperature Profiler for an Extended Surface (Fin)

// version 18.08.26

// j] weimer

// The functions in this procedure calculate, return, and
// display the temperature across an extended surface (fin).
// The temperature at the end of the fin is pinned.

// Igor Pro Settings

#pragma rtGlobals=3

// Functions

// plot_ThetavsZL(Le, tm, w, h, k, thetal)

// inputs

// Le — length of extension
// tm — measured thickness

// w — width

// h — convection coefficient

// k — thermal conductivity
// thetal — relative temperature at end of fin
// returns a plot of Theta(z/L)

Function plot_ThetavsZL (Le, tm, w, h, k, thetal)
variable Le, tm, w, h, k, thetal

// local variables
variable P, A, m, mL

string plottxt

// perimeter, area, and m

P = 2%x(tm + w)
A = tmxw
m = sqrt(hxP/(kxA))

// dimensionless values

mL = mxLe

// create the wave (overwrite as needed) and set

make /O/N=101/D theta
SetScale/P x, 0, 0.01, theta

// fill the wave and display it
theta = f_Theta(x/Le, mL, thetal)

sprintf plottxt ,"Dimensionless_Temperture_at_(%3.2f_, %3.3g)", mL,

display theta as plottxt

// clean up the graph

SetAxis left, 0, 1

SetAxis bottom, 0, 1
ModifyGraph mirror=2,fSize=14

Label left "\\Z16Dimensionless _Temperature'

Label bottom "\\Z16Dimensionless_Position"

ModifyGraph width=432,height={Aspect,0.75},
sprintf plottxt ,"\\ZI8\\JCProfile_in_Fin\r(%3.2f_,_ %3.3g)", mL,

TextBox /C/N=text0/F=0 plottxt
return 0

end

its x—scaling

Isize=2

// calc_Tofz(Le, tm, w, h, k, z, To, Tinf, TL)

// inputs

// Le — length of extension
// tm — measured thickness

// w — width

// h — convection coefficient

// k — thermal conductivity

// z — position

// To — wall temperature

// Tinf — external temperature
// TL — temperture at end of fin
// returns T(z)

Function calc_Tofz(Le, tm, w, h, k, z, To, Tinf, TL)

variable Le, tm, w, h, k, z, To, Tinf, TL

// local variables
variable P, A, m, zdim, mL, thetalL , theta,

Trtn

thetalL

thetalL

// perimeter, area, and m

P = 2%(tm + w)
A = tmxw
m = sqrt(hxP/(kx*A))

// dimensionless values

zdim = z/Le

mL = mxLe

thetalL = (TL — Tinf)/(To — Tinf)

// dimensionless temperature
theta = f_Theta(zdim, mL, thetal)

// actual temperature
Trtn = thetax(To — Tinf) + Tinf

return (Trtn)

end

// f_Theta(zdim, mL, thetal)
// inputs: position, convection/conduction ratio, end temperature
// returns: theta
Function f_Theta(zdim, mL, thetal)
variable zdim, mL, thetalL

variable terml = thetalL — exp(—mL)
variable num = exp(mLxzdim) — exp(—mLxzdim)

variable den = exp(mL) — exp(—mL)

variable rtn

terml *(num/den) + exp(—mLxzdim)
return rtn
end

The command line inputs to generate the results were

plot_ThetavsZL(1, 0.001, 0.5, 10, 400, 0.125)
print calc_Tofz(1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30)

Results - Python

The plotting function has this format
plot_ThetavsZL(L, tm, w, h, k, thetal)

The inputs a fin length, measured thickness, width, convection coefficient, thermal conduction

coefficient, and relative temperature at the end. It produces a plot titled with the value of m and 6.

A plot of @ versus x/L is provided in Figure 2 for the conditions specified. In this case, @ =
(30 —20) /(100 —20) = 0.125. The function call was

plot_ThetavsZL(1, 0.001, 0.5, 10, 400, 0.125)

The calculation function has this format

calc_Tofz(L, tm, w, h, k, z, To, Tinf, TL)

It returns the value of T for the input conditions. A test result gives

calc_Tofz(1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30) -> 21.73

o
]
| Co
=
(Wi
™
H
! =
=] k=
(= o
S CE
oo o
o™ [Tal
LA
S w
e] [=
= =
- |.|i|
£ ==
Lt &
1=
[
b
(8
| ™
=
=
L] ! ! ! ﬂ.
[| (=] LEa = [i
— = [[(o] (o]

ainjeladwa] Ssa|UcIsUILWIN

Figure 2: Plot of dimensionless temperature versus dimensionless distance produced using python
(in a Jupyter notebook). Specifications and the approach used are given in the text. Values for

(m,®p) are given on the plot.

Code - Python

The code was generated in a Jupyter notebook. The definitions are documented in line.

Temperature Profiler for an Extended Surface (Fin)
version 18.08.26

author j j weimer

The functions in this procedure calculate, return, and display the temperature across an extended

surface (fin). The temperature at the end of the fin is pinned.

import modules
import math
import numpy as np

import matplotlib.pyplot as plt

global configuration parameters for graph
startx = 0; starty =0

endx = 1; endy = 1

npx = 101; npy = 101

global x, y arrays for graph

np.linspace (startx ,endx,npx)

y = np.linspace (starty ,endy,npy)

calculate temperature at position
def calc_Tofz(Le, tm, w, h, k, z, To, Tinf, TL):

perimeter , area, and m

2x(tm + w)
tm*xw

math. sqrt (hxP/(kxA))

3 » v #*
I

dimensionless values

zdim = z/Le

mL = mxLe

thetalL. = (TL — Tinf)/(To — Tinf)

dimensionless temperature

10

theta = f_Theta(zdim, mL, thetal)

actual temperature
Trtn = thetax(To — Tinf) + Tinf

return Trtn

generate the dimensionless temperature
def f_Theta(zdim, mL, thetalL):

terml = thetalL — np.exp(—mL)

num = np.exp(mLxzdim) — np.exp(—mLxzdim)
den = np.exp(mL) — np.exp(—mL)
rtn = terml x(num/den) + np.exp(—mLxzdim)

return rtn

plot the dimensionless temperature profile
def plot_ThetavsZL (Le, tm, w, h, k, thetalL):

perimeter , area, and m

2x(tm + w)
tm*xw

math. sqrt (hxP/(kx*A))

3 » v #*
I

dimensionless values
mL = mxLe

generate y vs x data
#global x, y
y = f_Theta(x, mL, thetal)

create plot

plt.plot(x,y,color="red’,linewidth=2)

plt.axis ((startx ,endx,starty ,endy))

plottxt = "Profile_in_Fin_for_ ({:.2f},{:.3f})".format(mL, thetaL)
plt.title (plottxt)

plt.xlabel (’Dimensionless _Position’)

plt.ylabel (’Dimensionless_Temperature)

plt.show ()

plot_ThetavsZL (1, 0.001, 0.5, 10, 400, 0.125)
calc_Tofz (1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30)

11

Results - Maple

The plotting function has this format
plot_ThetavsZL(L, tm, w, h, k, thetal)

The inputs a fin length, measured thickness, width, convection coefficient, thermal conduction

coefficient, and relative temperature at the end. It produces a plot titled with the value of m and 6.

A plot of @ versus x/L is provided in Figure 3 for the conditions specified. In this case, ® =
(30 —20)/(100 —20) = 0.125. The function call from the command line was

plot_ThetavsZL(1, 0.001, 0.5, 10, 400, 0.125)

The calculation function has this format

calc_Tofz(L, tm, w, h, k, z, To, Tinf, TL)

It returns the value of T for the input conditions. A test result from the command line gives

calc_Tofz(1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30) -> 21.73

12

0.8

0.6

0.4
Dimensionless Position

Profile in Fin for (7.08, 0.125)

0.2

- - -
dumyeddwd [, SSO[UOISUdWI(]

0
S

Figure 3: Plot of dimensionless temperature versus dimensionless distance using Maple. Specifi-

cations and the approach used are given in the text. Values for (m,®;) are given on the plot.

13

Code - Maple

The formatted pages of workbook code from Maple are included directly in the pages that follow.

14

Capstone Example

Functions
f Theta(zdim, mL, thetal.)

inputs: dimensionless distance, convection/conduction ratio, and end temperature
output: dimensionless temperature at position

f Theta = proc(zdim, mL, thetal)

local term I, num, den, rtn :

terml = thetal - exp(-mL) :
num = exp(mL-zdim) - exp(-mL-zdim) :

den := exp(mL) - exp(-mL) :

rtn == terml - (%) + exp(-mL-zdim) :
return rin

end proc:

calc_TofZ(Le, tm, w, h, k, z, To, Tinf, TL)

inputs:

length, measured thickness, width

convection coefficient, thermal conductivity

position

start temperature, external temperature, end temperature
output: temperature at z

calc_TofZ :=proc(Le, tm,w, h, k, z, To, Tinf, TL)
local P, A, m, zdim, mL, thetaL, thetaA, Trtn :

perimeter, area, and m
P:=2-(tm +w):
A= tm-w:

Coursework (c) J J Weimer

=[x
%

dimensionless values

z
dim == —
zdim Io

mL = m-Le:

TL - Tinf
thetal = —————":
e To - Tinf
dimensionless and actual temperature
thetaA = f Theta(zdim, mL, thetal) :
Trtn := thetaA-(To - Tinf') + Tinf:

return 7rin

end proc:

plot_ThetavsZL(Le, tm, w, h, k, thetal.)

inputs:
length, measured thickness, width
convection coefficient, thermal conductivity
dimensionless end temperature
output: plot of dimensionless temperature versus dimensionless position

plot ThetavsZL :=proc(Le, tm, w, h, k, thetal)
local P, A, m, mL, plottxt, xlabel, ylabel, pf :

perimeter, area, and m
P:=2-(tm + w):

A= tm-w:
Py— h.P .

dimensionless values

Coursework (c) J J Weimer

mL :=m-Le:

create and display the plot
plottxt := sprintf ("Profile in Fin for (%3.2f, %3.31)", mL, thetal) :
xlabel := "Dimensionless Position" : ylabel := "Dimensionless Temperature" :
plots:-setoptions (axes = boxed, title = plotixt,
labels = [xlabel, ylabel],

labeldirections = [horizontal, vertical |,

size = [440, 330]) :
pf = plot(f Theta(x, mL, thetal),x=0..1,0..1, color = red, thickness =2) :

plots:-display (pf’)

end proc:

Coursework (c) J J Weimer

Results - MatLab

The plotting function has this format
plot_ThetavsZL(L, tm, w, h, k, thetal)

The inputs a fin length, measured thickness, width, convection coefficient, thermal conduction

coefficient, and relative temperature at the end. It produces a plot titled with the value of m and 6.

A plot of @ versus x/L is provided in Figure 4 for the conditions specified. In this case, ® =
(30 —20)/(100 —20) = 0.125. The function call from the workspace was

plot_ThetavsZL(1, 0.001, 0.5, 10, 400, 0.125)

The calculation function has this format

calc_Tofz(L, tm, w, h, k, z, To, Tinf, TL)

It returns the value of T for the input conditions. A test result from the command line gives

calc_Tofz(1, 0.001, 0.5, 10, 400, 0.6, 100, 20, 30) -> 21.73

18

0.6 0.7

|
|
0.5
Dimensionless Distance

Profile in Fin at (7.08, 0.125)

-] @
o
- o
o
B 4
o
| | | | | | | | | o
- o ©o N © 1y ¥ ©o o = o
o o o o o o o o o

alnjelsodwa| ssajuoisuswiq

Figure 4: Plot of dimensionless temperature versus dimensionless distance using MatLab. Specifi-

cations and the approach used are given in the text. Values for (m,®;) are given on the plot.

19

Code - Maple

The code was written in three live function files. The files were loaded in an active session.

Plot Temperature Profile

This plots the dimensionless temperature profile in the fin.
function pTheta = plot_ThetavsZL (Le, tm, w, h, k, thetal)

% perimeter , area, and m

P = 2%(tm + w);
A = tmxw;
m = sqrt(h*xP/(k*xA));

% dimensionless values
mL = mxLe

% initialize x, y vectors
x = linspace (0,1,101)

% generate the curve
y = f_Theta(x, mL, thetalL);

% generate plot

plottxt = sprintf("Profile_in_Fin_at_(%3.2f,_ %3.3f)" ,mL, thetalL);
figure

pTheta = plot(x,y, red’);

pTheta.LineWidth = 2;

ax . FontSize = 16;

xlim ([0 ,1]);

ylim ([0 ,1]);

title (plottxt);

xlabel (’Dimensionless_Distance ’);

ylabel (’Dimensionless_Temperature’);

end

Temperature Calculator

Calculates temperature at position in fin

function Trtn = calc_TofZ(Le, tm, w, h, k, z, To, Tinf, TL)

% perimeter , area, and m
P = 2%(tm + w);

20

end

B
[

tm*w;

sqrt (hxP/(k*xA));

% dimensionless values

zdim

= z/Le;

mL = mxLe;
thetalL. = (TL — Tinf)/(To — Tinf);

% dimensionless and actual temperature
theta = f_Theta(zdim, mL, thetal);
Trtn

= theta*(To — Tinf) + Tinf;

Theta Calculator

Calculates dimensionless

function

end

term
num
den

rtn

1

temperature at position along
rtn = f_Theta(zdim, mL, thetal)

= thetalL — exp(—mL);

exp (mLxzdim) — exp(—mLxzdim);

exp(mL) — exp(—mL);
(terml x(num/den)) + exp(—mLxzdim);

21

fin

Summary
Coding Language

All four programs use comparable syntax to define functions and operations. Differences are in
such aspects as variable declarations (explicitly required in Igor Pro, implicit in others) and types
of line endings required. Python requires that specific packages be pre-loaded and commands be
prefixed to them in order to access functionality that is otherwise directly accessible in the other

platforms.

Ease of Coding and Use for a Novice

I contend the most difficult coding platform for a novice to use is MatLab. Different functions
must each be written to their own separate file with file names that are the same as the function.
Operations are handled across multiple windows (active functions and editors and plot windows),
each having a plethora of button options. I admit that further experience may override this rating,

although I suspect not.

By comparison, the single-window approach used in Maple and python affords significant benefits
to a novice programmer. One can develop code, run it, and see the output directly all within one

single window.

Igor Pro separates graphical output windows (graphs), code windows (procedures), and an in-
put/output window (command line). Once this division is mastered, Igor Pro affords all of the

advantages of Maple or python (develop, run, and observe) without those of MatLab.

Plot Quality

For the same level of coding input, I maintain the best quality plots are obtained using Igor Pro.
The next best quality plots are obtained by using either python or Maple. Finally, I maintain the

worst quality plots for the same coding effort are obtained using MatLab.

For graphics, the significant advantage of using Igor Pro over all three other platforms is that Igor
Pro allows the user to change the format of graphs through menu commands and by user interface
controls. By example, in Igor Pro, to change the thickness of a line on a graph, click on the line and
use a dialog interface to change it (as well as color, line style, and a host of other properties). This
means, Igor Pro is the absolute best platform at separating the process of analyzing data with code

and generating graphics from the results. One must learn to code in any of the four platforms in

22

order to analyze data, but one does not need to learn how to code at all to make a publication-ready
graph of the results in Igor Pro. To be fair, Maple also provides a context-menu list that allows a

user to change graph formats without programming. This is cuambersome by comparison.

Advanced Level Efforts

Igor Pro, Maple, and python (in Jupyter) allow a user to include interactive widgets such buttons,

variable settings, and sliders. Whether this is possible in MatLab is unexplored at this time.

Igor Pro, Maple, and python (in Jupyter) allow a user to save the effort as a self-contained demon-

stration package. Whether this is possible in MatLab is unexplored at this time.

Maple allows the user to style the format throughout the workbook, and the workbook can be
printed or exported as PDF. Jupyter allows the user to add blocks of formatted text to the document,
although obtaining printable output of the entire formatted document is cumbersome to impossible.
Igor Pro allows the user to lay out graphical and tabular results in notebooks that can be printed,

although the effort is not handled as elegantly as with a Maple workbook.

Recommendations

When you as a novice must learn how to code to analyze data, avoid MatLab. Its use of multiple
windows is confusing because it adds extra steps to the cycle of developing, running, and observing
code. Choose either python (within Jupyter), Igor Pro, or Maple because you can develop, run, and
observe results within one window or within well defined containers (i.e. Igor Pro). When your
analysis is to be married with the manipulation of symbolic math equations, use Maple. Its ability
to show mathematical expressions in readable form (rather than in “computer language format”) is

unsurpassed.

When the quality of the graphical output matters, and when you do not want to spend time to
learn a host of potentially idiosyncratic commands that are needed to make effective changes to
the quality of your graphics, choose Igor Pro or perhaps Maple. None of the platforms that are
covered here compare to Igor Pro in the ease of making publication-ready graphs with no need to

know how to code.

Finally, when you want to code interactive demonstrations of functions for rapid review, choose

python in Jupyter.

23

