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Introduction

The findings of deterministic dynamics in seemingly random physical
process have excited biological researchers who collect time series data.
The best tools for this kind of analysis require extremely long and noise-
free data sets that are not available from biological experiments. Nonethe-
less, one such tool has found widespread use. In 1991, Pincus adapted the
notion of ‘‘entropy’’ for real-world use.1 In this context, entropy means
order or regularity or complexity, and has roots in the works of Shannon,
Kolmogorov, Sinai, Eckmann and Ruelle, and Grassberger and co-
workers. The idea is that time series with repeating elements arise from
more ordered systems, and would be reasonably characterized by a low
value of entropy. Were the data sets infinite and perfect, it would be
possible to determine a precise value of entropy. Biological data sets are
neither, but Pincus had the important insight that even an imperfect esti-
mate of entropy could be used to rank sets of time series in their hierarchy
of order. He introduced approximate entropy (ApEn), and many
papers have appeared drawing conclusions about the relative order of
physiological processes.

In principle, the calculation is simple enough, and is shown schemati-
cally in Fig. 1. ApEn quantifies the negative natural logarithm of the condi-
tional probability (CP) that a short epoch of data, or template, is repeated
during the time series. Having selected a template of length m points, one
identifies other templates that are arbitrarily similar and determines which
of these remain arbitrarily similar for the next, or m þ 1st point. ‘‘Arbitrari-
ly similar’’ means that points are within a tolerance r of each other, where r
is usually selected as a factor of the standard deviation (SD). The negative
logarithm of the conditional probability is calculated for each possible tem-
plate and the results averaged. If the data are ordered, then templates that
are similar for m points are often similar for m þ 1 points, CP approaches 1,
and the negative logarithm and entropy approach 0.

The concepts are solid and the potential utility is great. We found, how-
ever, that there are practical issues of great importance in implementing
the algorithm. These findings motivated us to develop sample entropy
1 S. M. Pincus, Proc. Natl. Acad. Sci. USA 88, 2297 (1991).
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Fig. 1. Schematic demonstration of entropy estimation using approximate entropy

(ApEn) and sample entropy (SampEn). The time series begins with the ith template. In this

example, m is 2. The tolerance for accepting matches is r times the standard deviation, and is

shown by the error bars. Here, the template is matched by the 11 and 12th points (solid box),

and the m þ 1st points also match (dashed box). Thus quantities A and B both increment by 1.
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(SampEn) as an alternative method for entropy estimation in real world
data. In this chapter, we first overview the problems of ApEn and how
SampEn addresses them. We next present a formal implementation of
SampEn and discuss the practical issues of optimization of parameters
and data filtering. This is followed by a discussion of the difficulties with
short data sets and nonstationary data. We end with comments on inter-
pretation of entropy estimates and a direct comparison of ApEn and
SampEn. The algorithms discussed are available at www.Physionet.org.
For full details, we refer the reader to our original papers.2,3

Motivation for SampEn Analysis

In our initial implementation of ApEn analysis of heart rate dynamics,
we encountered practical questions.

1. What if some templates have no matches, and the CPs are not
defined? Pincus follows the teaching of Eckmann and Ruelle and allows
2 D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, Am. J. Physiol. 283,

R789 (2002).
3 J. S. Richman and J. R. Moorman, Am. J. Physiol. 278, H2039 (2000).

www.Physionet.org
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templates to match themselves. Thus if there are no other matches, the CP
is 1 and ApEn is 0, a report of perfect order. If there are only a few tem-
plate matches, then the result is biased toward 0, and the bias resolves with
lengthening data sets and more template matches. Pincus and co-workers
have explicitly described the bias of ApEn and have contended that the im-
portant goal of reporting a correct hierarchy of order is preserved, a feature
named ‘‘relative consistency.’’ Thus if time series A arises from a more
ordered system than time series B, then ApEn of A will always be less
than ApEn of B regardless of the number of template matches and the
extent of the bias.

We have developed SampEn statistics to reduce the bias of ApEn sta-
tistics.2,3 We have found that SampEn preserves relative consistency more
often than ApEn.

2. How long should a template be, and how similar should ‘‘arbitrarily
similar’’ be? That is, how does one pick m and r? The usual suggestion is
that m should be 1 or 2, noting that there are more template matches and
thus less bias for m ¼ 1, but that m ¼ 2 (or greater) reveals more of the
dynamics of the data. The usual suggestion is that r should be 0.2 times
the SD of the data set on empirical grounds.

We have proposed a systematic approach to selecting m and r based on
evaluation of novel error metrics for SampEn that are discussed later.

3. Does a low value of entropy always mean increased order?
No differential diagnosis has been suggested for ApEn. We have found

that time series with spikes have low values of ApEn and SampEn, a direct
consequence of the practice of basing the tolerance r on the SD.2 Spikes
inflate the SD and allow many template matches of lengths m and m þ 1
in the baseline. The high CP leads inevitably to a low value for the entropy,
but it is not intuitively correct that a large number of matching templates
in the baseline necessarily reflects order.
Sample Entropy Calculation

As a statistic, SampEn(m,r,N) depends on three parameters. The first, m,
determines the length of vectors to be considered in the analysis. That is, given
N data points {u( j): 1 � j � N}, form the N�m þ 1 vectors xm (i) for {i j 1 � i �
N � m + 1} where xm(i) = {u (i + k): 0 � k � m � 1} is the vector of m data
points from u(i) to u(i + m � 1). The distance between two vectors, denoted
d[xm (i), xm (k)], is defined to be max {ju(i þ j) � u(k þ j)j: 0 � j � m � 1}, the
maximum difference between their corresponding scalar components.

The original formulation of SampEn closely followed the Grassberger–
Procaccia correlation integral. However, a more intuitive and less notation-
ally intensive approach simply considers SampEn(m,r,N) to be the negative
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natural logarithm of the empirical probability that d[xmþ1 (i), xmþ1 (k)] � r
given that d[xm(i), xm (k)] � r. Where the values of the parameters are
specified let B denote the number of pairs xm (i), xm (k) such that d[xm

(i), xm (k)] � r, and let A then be the number of pairs of vectors xmþ1 (i),
xmþ1 (k) such that d[xmþ1 (i), xmþ1 (k)] � r. Then SampEn(m,r,N) ¼ �ln
(A/B). For simplicity, we refer to a match of two vectors of length m as
a template match, and the matching of two vectors of length m þ 1 as a
forward match.

The computationally intensive aspect of the algorithm is simply
counting the numbers A and B, which at least requires checking the dis-
tance between the [N(N � 1)]/2 pairs of points, then counting the number
of vectors that match for m and m þ 1 points. There are two additional
computational considerations, both of which are fully discussed in the ini-
tial paper by Richman and Moorman.3 First, we do not compare any vector
with itself since this provides no new information. Second, although the
vector xm (N � m þ 1) exists, we do not use it for comparisons, since the
vector xmþ1 (N � m þ 1) is not defined. That is, if some xm (i) were to
match xm (N � m þ 1), they could not both be incremented, and thus could
contribute only to B but not A. In practice, for a data set of reasonable size
this will have little effect, but scenarios can be constructed where it could
significantly alter results.

While SampEn is often used with just one fixed value of m, there is an
implementation of the algorithm that efficiently calculates SampEn(k,r,N)
for all k from 1 up to m. The basic idea is to build up runs of points match-
ing within the tolerance r until there is not a match and keep track of tem-
plate matches A(k) and B(k) of all lengths k up to some specified
parameter m. If a particular run ends up being of length 4, for example,
then that means that 1 is added to the count for template matches of length
4. In addition, there are 2 template matches of length 3, 3 of length 2, and 4
of length 1 that need to be added to the corresponding counts. A special
distinction is needed when a run ends at the last point in the data where
the A(k) counters are incremented but the B(k) counters are not.
Practical Issues with SampEn Calculation

Optimizing Parameters

Having decided how to manage the data the next task must be to
optimize the parameters for SampEn(m,r,N) by some rational strategy.
For most current applications the parameters must be fixed to allow valid
comparisons. Circumstances that may indicate varying parameters will be
discussed separately. The parameter N is usually taken as the size of the
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data set. Since N determines the range of SampEn(m,r,N) by providing an
upper limit for B, care must be used when comparing epochs of differing
lengths, especially if SampEn(m,r,N) approaches its theoretical maximum
for any epoch. Selecting m and r is more involved. Assuming that there is
some underlying deterministic structure, as m grows larger, the conditional
probability of a forward match should increase, since conditioning on a
longer vector should increase predictive accuracy. On the other hand,
due to the noise from measurement errors or system interaction the
number of template matches will decrease as m increases simply because
it is less likely that the noise level will permit long templates to match at
all. In fact, beyond a certain length the templates will largely be due to
chance rather than dynamic similarity. In addition, and likely before this
point is reached, the matches will be so few that the statistics become unre-
liable. Conversely, when m is too small, template matches are plentiful (B is
large), but not enough predictive information is contained in the short
template leading to an underestimation of the probability of a forward
match. The compromises involved in choosing r are similar. An r that is
too small, smaller than the typical noise amplitude, will result in many
vectors that are actually similar failing to match. On the other hand, when
r is too large, SampEn(m,r,n) loses its discriminating power entirely since
most templates will look similar to one another given sufficiently lax
matching conditions.

The ideal choice then would be to make m as large and r as small as pos-
sible, while ensuring that B remains large enough to ensure precise statis-
tics. Ideally, one could choose m based upon knowledge of the time scale of
the underlying process, and r based upon knowledge of the scale of signal
noise. In practice, we have chosen m by fitting an autoregressive model to
the data and setting m to be the optimal order of the model. This method
has the advantage of drawing upon a vast literature and established
methods for optimizing such models. We then choose r to minimize the
relative error of A/B and SampEn(m,r,N).

Given the B template matches calculating the standard error of the con-
ditional probability estimate CP ¼ A/B is nontrivial. This is largely due to
the fact that vector comparisons are not independent. Not only should
there be some dependence due to the underlying process but some com-
parisons are formally dependent on others because they overlap and thus
share data points. Nevertheless an approximation of this standard error is
given by

� 2
CP ¼ CPð1 � CPÞ

B
þ 1

B2
KA � KBðCPÞ2
h i
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where KA denotes the number of overlapping pairs or m þ 1 point vectors,
and KB denotes the number of overlapping pairs of m point templates.
That is, KA is the number of pairs [xmþ1 (i), xmþ1 ( j)], [xmþ1 (k), xmþ1 (l)]
in which a vector from one pair shares at least one data point with a vector
from the second pair and both pairs match within r. This would be the case
if, for example, xmþ1 (i) and xmþ1 (k) had a point in common. KB is defined
analogously for vectors of length m. Counting KA and KB requires
both care and a considerable amount of computer time. From this we can
approximate the standard error of SampEn(m,r,n) by �CP/CP. Having
chosen m we then advise choosing r to minimize the larger of �CP/CP
and �CP/�log(CP)CP, the relative errors of the empirical CP and
SampEn(m,r,n), respectively. The estimate of �CP is also useful in that it
allows for the calculation of approximately 95% confidence intervals for
SampEn(m,r,n) by 1.96 (�CP/CP).

At this point another consideration must be addressed regarding r. It is
standard practice to set r to be some multiple of the standard deviation of
the data. This effectively normalizes the data, adjusting for differences of
scale. This is appropriate if the analysis is driven by the search for order
in the dynamics. If, however, the goal is to efficiently distinguish various
data sets the rescaling can make two data sets appear identical when they
clearly are not. There can also be problems with interpretation since
broad trends or transient phenomena can inflate the variance to the point
where all local dynamics appear similar only because they have made the
tolerance r too coarse to discern genuine similarity.

Having chosen a method for selecting parameters it is then necessary to
choose either some or all of the data and calculate SampEn(m,r,N) for a
range of the parameters. Since these calculations can be time consuming
it is often advisable to select either a random sample from all the data or
some characteristic data sets to find parameters that are broadly appropri-
ate for all the data. This is not, of course, a definitive method for choosing
parameters, but one that balances the requirements of discerning distinc-
tive features of the data (sufficiently large m and small r) and allowing
for accurate and precise estimates (adequate B).

Other suggested approaches involve choosing the parameters that
maximize the deviation of SampEn(m,r,N) from SampEn(0,r,N), the nega-
tive logarithm of the probability that a pair of points will match within
r given no other information, i.e., the value of SampEn(m,r,N) if the data
were in random order. This method focuses on locating the parameters that
detect the most ‘‘order’’ in the data. Above all, the most important factor is
choosing parameters appropriate for the data at hand. It cannot be over-
emphasized that prior to any meaningful analysis the parameters must be
chosen to be suitable for the data. We have no reason to suspect that there
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are universally optimal parameters suitable for any and all data sets. We
therefore advocate that they be chosen either by optimizing their empirical
properties on a subset of the data, or by choosing reasonable parameters
based on prior knowledge and checking their performance by, for example,
making sure that the resulting confidence intervals are not too wide.

Another strategy for distinguishing data sets is to view the identification
of optimal parameters from another angle. We have so far considered
identifying the finding parameters that maximize the usefulness of SampEn
statistics as the characteristic measure of the time series. We could choose
instead to optimize properties of SampEn(m,r,N) and use the resulting
parameters to characterize the time series. This approach has the potential
advantage of providing a categorical classification by m of predictive
scale (or by a time delay � , if using the time delay techniques discussed
later) or a continuous measure of structural detail by r. Again, a reasonable
approach is to maximize the difference between SampEn(m,r,N)
and SampEn(0,r,N). Another would be to maximize the difference be-
tween SampEn(m,r,N) for the time series and for a surrogate time series
incorporating the linear correlation structure of the time series.4

Once the parameters have been chosen all the data may be analyzed
and the values of SampEn(m,r,N) incorporated into regression models or
tested via their confidence intervals as to whether they differ significantly
from one another. Again, under these conditions SampEn statistics appear
to provide a robust way to discriminate between time series. More care is
needed to say what proportion of the measure is due to order and what is
due to nonstationarity.

Filtering

Many time series techniques assume at least weak stationarity, so data
are often subjected to filtering to render them approximately stationary
prior to analysis. This alters the correlation structure of the data in a way
that can change the SampEn analysis, and should be done judiciously.
The accuracy and precision of SampEn(m,r,N) ¼ �ln(A/B) is limited by
the magnitude of B. Trends in the data can separate points whose local dy-
namics are similar but whose locations are far removed. When trends are
understood, they may be removed, laying bare the unexplained dynamics.
Nevertheless, there is always the risk that the most interesting features
could be blunted or obliterated by filtering and smoothing. Leaving the
data unfiltered removes some danger of manufacturing spurious matches
at the expense of lowering B. Fortunately, only large data sets really have
4 T. Schreiber and A. Schmitz, Physica. D 142, 346 (2000).
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enough points to display complicated trends, and these are the least likely,
by virtue only of their size, to be hampered by a low value of B.

This discussion has so far assumed that the time scale of the studied dy-
namics are near to the scale of sampling. If, however, one is more inter-
ested in longer time scales, that is, when the data are effectively
oversampled, the usual approach can be modified in several ways.
These generally involve changing or altering the reconstruction vectors
xm(i) to include time delays. This is accomplished by using vectors of the
form x�

m(i) ¼ {u(i þ �k): 0 � k � m � 1} for a time delay � . Techniques
for choosing � are discussed extensively in the literature.5 In this case
there is little reason to use every possible vector since for an oversampled
process x�

mðiÞ will match x�
mði þ 1Þ as often and uninterestingly as xm(i) will

match xm(i þ 1). Thus some consideration needs to be given as to which
subsample of vectors should be used for analysis. Recently Costa et al.6

developed multiscale entropy analysis (MSE), which compresses the data
by constructing coarse time series of the form y�( j) ¼ 1/�

Pj�
i¼ð j�1Þ�þ1 u(i)

for 1 � j � N/� , that is, by dividing the series into a sequence of non-
overlapping windows of � points and representing the window by its
sample mean. The new point y�( j) corresponds to the mean of the jth
window of � points.

SampEn analysis was then carried out on these new series to give infor-
mation regarding the dynamics on larger time scales. Clearly this is easily
generalized to a family of such techniques. A more general version less sen-
sitive to the window locations would be to replace the series {u( j): 1 � j �
N} by a moving averaged series {u�( j): � � j � N} where each point is the
mean of the previous � points of the original time series. SampEn analysis
could then be carried out on the delayed vectors x̃�

mðiÞ ¼ uði þ k�Þ: 0� k�m
� 1}. Doing this for various values of � would broaden the MSE approach. It
may also be desirable to utilize weighted averaging rather than the simple
window average depending on the desired smoothing properties.

If the data are fairly precise and merely oversampled, it may be
worthwhile to use usual m-vectors and m þ 1 vectors of the form

xmþ1;� ðiÞ ¼ uði þ k�Þ; u i þ ðm � 2Þ þ �½ 	: 0 � k � m � 2f g

Thus the first m points of the vector are the usual m-dimensional recon-
struction vector while the last point has been sampled at the delay � . This
allows the oversampled (and dynamically uninteresting) portion of the data
to fix the system’s location in phase space more precisely, while the
5 H. D. I. Abarbanel, ‘‘Analysis of Observed Chaotic Data.’’ Springer-Verlag, New York,

1996.
6 M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett. 89, 068102 (2002).
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comparisons at the next �th point allows the system enough time to evolve
so that matches will be meaningful. Experimentation will be required to
select the optimum choice of � .

SampEn analysis does not require that any assumptions be made
regarding the stationarity of the data. However, in the absence of approxi-
mate stationarity care must be taken with the interpretation of SampEn
statistics. Indeed, as we shall see throughout this discussion, care must be
taken in all circumstances when interpreting SampEn statistics as indicative
of order in the data.
Difficult Data

Short Data Sets

The analysis of very short data sets may call for extra care. Samp-
En(m,r,N) is bounded by 0 and ln [(N � m)(N � m � 1)]/2. Thus short data
sets will have a decreased range. They will also have smaller values of B
and thus less precise statistics. This will be exacerbated by the fact that in
a small data set a higher proportion of comparisons involves overlapping
templates, a factor that will tend to inflate the variance of SampEn(m,r,N).
We have also shown previously that for short sets of i.i.d. random numbers,
overlapping templates lead to an average underestimation of A/B. Sce-
narios can be imagined wherein for oversampled data, the underlying pro-
cess does not have much time to evolve along any particular template. In
these cases overlapping templates will match each other with high prob-
ability. Unfortunately, the high estimated CP will be due to the local simi-
larity due to slow evolution of the system rather than self-similarity in
phase space.

One obvious remedy would be to disregard comparisons involving over-
lapping m þ 1 vectors. There are generally [(N � m)(N � m � 1)]/2 distinct
pairs of templates. Discarding those pairs of vectors that would overlap
when incremented to length m þ 1, there are [(N � 2m)(N � 2m � 1)]/2
distinct pairs. The fraction of matches discarded is then

mN 2 � 3 m
N � 1

N

� �
N2 1 � m

N

� �
1 � ðmþ1Þ

N

� � ffi 2m

N

for m << N. Thus for large N in exchange for a modest reduction in the
number of comparisons, we can ensure that the vectors are at least for-
mally, if not dynamically, independent, which should lead to a reduction
in SampEn’s variance as well as increased confidence that the CP is
correctly estimated.
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Nonstationary Data

We noted previously that there is no requirement that the data be sta-
tionary. The main concern is that the nonstationarity of the data could in-
flate the tolerance parameter r, and thereby induce spurious matches.
Given large amounts of data, choosing r to be as small as possible should
provide a reasonable safeguard. Nevertheless, particularly when con-
fronted with nonstationary data one may decide to average the values of
SampEn(m,r,n) for windows of length n < N, or adopt some other re-
sampling approach. SampEn(m,r,n) provides a global measure of the prob-
abilistic self-similarity of the data. Since the hallmark of nonstationarity is a
varying probabilistic structure, there may be cases in which it is advisable
to perform a piecewise analysis, dividing the time series into sections with
homogeneous structure and calculating SampEn for each segment. One
could then report the average of the individual SampEn statistics, where
each is weighted according to their proportion of the entire series.
Interpretation of SampEn

SampEn was originally intended as a measure of the order in a time
series. We have noted, however, that low SampEn statistics, indicative of
high CP estimates, cannot be assumed to imply a high degree of order.
There are in general two distinct mechanisms for generating high CP esti-
mates. The first is that genuine order has been detected. The second derives
from the fact that r is usually taken as a proportion of the standard devi-
ation of the series, thus rendering the analysis scale free. When nonstation-
ary features, especially transient ‘‘spikes,’’ inflate the variance and thus
coarsen the criterion for matching it can happen that virtually all recorded
matches are similar only because their dynamic scale is dwarfed by
the spikes. This has two ramifications. First, when the aim is to quantify
order with SampEn statistics, additional scrutiny is required to ascertain
how much of the statistic’s value is, in fact, due to order. Second, when
the goal is simply to numerically distinguish between data sets, SampEn
is very adept at detecting such spikes and generally discerning which
epochs are atypical.

When order detection is desired we suggest comparing SampEn(m,r,N)
to SampEn(0,r,N) to see whether conditioning on the templates signifi-
cantly increased the probability of a forward match. If SampEn(0,r,N) lies
outside the confidence interval for SampEn(m,r,N), then we are reasonably
confident that a significant amount of order was detected. If the goal
remains chiefly to discriminate among series, but it is desirable to lean
toward detecting order, r can be taken to be a proportion of the mean
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(or variance) of the series of first differences, that is, of the average
change from one point to the next. This effectively rescales the series to
have similar dynamic scales, and will generally give less weight to spikes.
One could of course simply perform SampEn analysis on the series of
first differences as well, but this acts as a high-pass filter and will obscure
long-range dynamics. Another approach would be to use r as an absolute
number, thereby allowing SampEn to distinguish between series that
differ only in their scaling. Unfortunately when the scales of the time series
vary widely, no r may be suitable to provide comparisons across all sets
with a meaningful interpretation for the statistic per se. However, the
SampEn statistics will likely still efficiently detect which data sets are
atypical.
ApEn and SampEn

We now summarize the differences between sample entropy and
approximate entropy and discuss possible bridges between the two ap-
proaches. Let Bi denote the number of template matches with xm(i) and
Ai denote the number of template matches with xmþ1(i). The number
pi ¼ Ai/Bi is an estimate of the conditional probability that the point xjþm

is within r of xiþm�1 given that xm(j) matches xm(i). ApEn is calculated by

ApEnðm; r;NÞ ¼ � 1

N � m

XN�m

i¼1

log
Ai

Bi

	 


and is the negative average natural logarithm of this conditional pro-
bability. Self-matches are included in the ApEn algorithm to avoid the
pi ¼ 0/0 indeterminate form, but this convention leads to a conditional
probability estimate of 1. This necessarily overestimates the true value
and leads to a noticeable bias especially for smaller N and larger m. In
contrast to the above, SampEn is calculated by

SampEnðm; r;NÞ ¼ � log
XN�m

i¼1

Ai

XN�m

i¼1

Bi

, !
¼ � log ðA=BÞ

 

which is just negative the logarithm of an estimate of the conditional
probability CP of a match of length m þ 1 given a match of length m.

There are advantages in using SampEn over ApEn. ApEn is more sen-
sitive to bias from short time series and to problems arising from outliers.
We discovered that ApEn could give misleading or contradictory results,
particularly for very short or noisy time series. Sample entropy was de-
veloped to improve some of these properties while maintaining the spirit
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of measuring the probability that two vectors that are close for m points
remain close. In all cases studied so far SampEn appears to be a more
robust and less biased statistic than ApEn. SampEn’s formulation is more
amenable to the construction of confidence intervals that give approximate
guidelines for significance tests.

Despite the advantages of using SampEn, there may be theoretical and
personal preference issues that necessitate using ApEn. ApEn statistics are
much more closely related to Shannon’s definition of information-theoretic
entropy that spurred the field of information theory more than 50 years ago
and they possess an additive property that is not rigorously shared by
sample entropy. Rukhin7 gives a clear statement of the relationship be-
tween Shannon’s entropy and ApEn. In addition, it is formally very closely
related to the entropy of statistical mechanics. There exists a vast literature
exploring the properties of such functions from both perspectives. In par-
ticular, Rukhin has recently proven that for discrete series, ApEn statistics
are asymptotically distributed as a �2 random variable. This suggests a
future practice of applying ApEn to discretized signals. The trade-off here
is that while information is lost to discretization, the parameter r can be dis-
carded since sequences of discrete values can be considered to match either
exactly or not at all. We note that while there are, as yet, no theoretical
proofs of SampEn’s asymptotic properties, Monte Carlo studies have
given no reason to suppose that SampEn’s asymptotic properties are not
well behaved.

Approximate entropy also is optimally suited to measure the Gaussian-
ity of a distribution and a process. Berg’s theorem established that the max-
imum entropy for a random process with finite variance is attained by a
Gaussian process. Thus ApEn values departing from the theoretical max-
imum indicate a lack of Gaussianity. SampEn can also be effectively used
as a measure of Gaussianity though its maximum occurs for non-Gaussian
random processes. When ApEn is used, modifications of how ApEn
handles zero and small number of matches can help minimize its bias and
begin to approach the statistical stability of sample entropy. This is an im-
portant open area for research. One of the major sources of ApEn bias
results when a template does not match any others, whereupon ApEn esti-
mates a conditional probability of 1. Pincus has suggested correcting this by
incorporating a factor e into calculation, thus setting the CP estimate in the
absence of matches.

In any implementation of ApEn, we advocate not counting self-
matches. When Ai ¼ Bi ¼ 0 (or near 0), the estimate Ai/Bi can be replaced
with some value e that is sufficiently smaller than 1 to indicate the likely
7 A. L. Rukhin, J. Appl. Prob. 37, 88 (2000).
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uncertainty of matching if no matching templates exist.6,8,9 The value
cannot be too small or �log(e) is prohibitively large and can lead to an
upward bias. Clearly, selecting the right value of e is dependent on the pro-
cess being studied. One approach is to use estimates ApEn(k,r,N) with k <
m based on shorter templates (and thus less biased) to approximate
�log(Ai/Bi) when matches are lacking. This is a generalization of the
method used by Porta and co-workers6,9 in the calculation of corrected
conditional entropy (CCE) where the Shannon entropy of the process is
used to approximate �log(Ai/Bi) when Bi ¼ 0. We suggest that when this
strategy is employed that the e factor should correct toward the SampEn
CP estimate. This novel and promising approach would take advantage
of the statistical value of sample entropy by setting e ¼ CP ¼ A/B from
the SampEn calculation and lead to a hybrid of the two algorithms.

There remain several unresolved issues in the use of SampEn. Much
work needs to be done to evaluate and rigorously establish the statistical
properties of SampEn statistics. Most desirable would be proof of the sta-
tistics’ asymptotic distributions. It will also be important to develop tests
for the proportional contributions of order and nonstationarity. Studies
also need to be undertaken to ascertain how the various optimization
methods lead to the selection of parameters, and how sensitive those selec-
tions are to outliers in the data. Given the parameter dependence of the
statistics and its relation to comparing datasets, we are also working to
develop related parameter-free statistics.

Thus we conclude the following:

1. A low value of ApEn is due to bias, order, or spikes. The relative
contributions cannot be quantified.

2. A low value of SampEn is due to order or spikes.

Our practice is to use SampEn with optimized choices of m and r. Work
remains on confident parsing of the results to order and spikes.
8 S. M. Pincus and A. L. Goldberger, Am. J. Physiol. 266, H1643 (1994).
9 A. Porta, G. Baselli, F. Lombardi, N. Montano, A. Malliani, and S. Cerutti, Biol. Cybern. 81,

119 (1999).
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