
PackageTools Documentation
Version 1.2

Jeffrey J Weimer

September 26, 2010

1 Introduction

The Igor Pro package PackageTools is designed for programmers to have a consistent way to manage
packages that are developed for general use. It provides functions to set up, get help for, and remove
a package. It also includes functions that will show a list or log of installed packages.

2 Benefits

If you are a general user of Igor Pro (rather than a package developer), your benefits from installing
this package are that you will gain administrative tools to oversee what packages have been set up in
your experiment. When a programmer designs a package to follow the conventions of PackageTools,
certain things will happen automatically. First, ever time you install a compliant package, you will
get a print out in the history window showing that package has been set up. Secondly, you will be
able to use functions on the command line to show a log or list of installed packages and get help
for any of them.

Package developers are encouraged to make use of the functionalities provided within Package-
Tools to help their users administer their packages with a consistent framework of commands.

3 Installation

This package requires at least Igor Pro version 6.20.
Install this package by putting its folder into the Igor Procedures folder. This will assure that

it is always available for every experiment. Never put this into the User Procedures folder and
use an #include statement to install this package as part of an experiment. Doing so will lead to
unpredictable results.

4 Functions

PackageTools contains static (restricted) and non-static (common) functions.

1

http://www.WaveMetrics.com/


2 Igor Pro Package

4.1 Restricted (Static) Functions

The static functions are specifically designed for users (rather than programmers) who have installed
PackageTools. They return information about the packages that have been set up in compliance
with the conventions in PackageTools. To access the functions below, you must preface the command
with the noun PackageTools#.

ShowLog()

This functions shows a notebook page that contains a log of when packages where setup, updated,
or removed using PackageTools.

ListPackages()

This functions shows a notebook page that lists all information given for all packages that have
been set up using PackageTools.

PackageKey(name, key)

This string functions returns the key value for the package named name.

Example:
PackageTools#PackageKey("PackageTools","author") - returns my name



PackageTools 3

4.2 Common (Non-Static) Functions

The non-static functions can be called directly from the command line or within a function. They
are really designed for programmers, not for a general user of PackageTools. The general exception
is the PackageHelp function, as described below.

PackageSetup(name, [folder, version, info, author, file, hasHelp, removable, more, removable, quiet])

This function is for programmers to setup a package using PackageTools.

name string name of the package

folder optional string denoting the location of the package folder
default: root:Package:PackageName

version optional floating point variable of the package version number

info optional short string describing the package (shown in place of help)

author optional string name of author

file optional string name of procedure file (including extension)

hasHelp optional variable denoting help file exists (1) or does not exist (0)
default: missing value is the same as having no help

more optional string list of additional keyword:value information for the package

removable optional variable stating whether package is allowed to be removed (1) or not (0)
default: missing value says the package cannot be removed (removable = 0 )

quiet optional variable to print information in history (0) or not (1)
default: missing value is the same as quiet = 0

This function does only one thing. It writes all the information that is provided to it into a key
string that is stored with the experiment. The key string is stored in a data folder within the
experiment at root:Packages:PackageTools:Keys and has the name of the package. Confirmation
is given in the history window and log of when a package is set up.

Example:
PackageSetup("PackageTools",version=1.2,author="Jeffrey JWeimer", more="email:jjw@usa.world")



4 Igor Pro Package

PackageUpdate(name, [folder, version, info, author, file, hasHelp, removable, more, removable, quiet])

This function is for programmers to update a package using PackageTools.

name string name of the package

folder optional string denoting the location of the package folder
default: root:Package:PackageName

version optional floating point variable of the package version number

info optional short string describing the package (shown in place of help)

author optional string name of author

file optional string name of procedure file (including extension)

hasHelp optional variable denoting help file exists (1) or does not exist (0)
default: missing value is the same as having no help

more optional string list of additional keyword:value information for the package

removable optional variable stating whether package is allowed to be removed (1) or not (0)
default: missing value says the package cannot be removed (removable = 0 )

quiet optional variable to print information in history (0) or not (1)
default: missing value is the same as quiet = 0

This function does two things. First, it checks that any of the information that is provided to is
different from what is already stored. Then, if it is different, it writes the new information into the
key string that is stored with the experiment. Confirmation is given in the history window and log
of when a package is updated.

Example:
PackageUpdate("PackageTools",version=1.3,info="A package to manage packages")

PackageHelp(name, [key])

This function is for programmers to show help for their package using additional features in Package-
Tools. When you have installed PackageTools in your experiment, you can also type this command
on the command line to get help on any package that follows the conventions of PackageTools.

name string name of the package

key optional string with one of the keys folder, version, info, author, hasHelp, or removable
additional keys given with more may also be accessed this way



PackageTools 5

When key is not given and when hasHelp = 1 for the package, this function will show the help file
for the package. In this way, it is equivalent to the Igor Pro command DisplayHelpTopic. However,
when a help file does not exist or when hasHelp = 0, the info string for the package is shown.
Finally, when the help file and info string both do not exist, a notice is also given that no help is
available.

Example:
PackageHelp("PackageTools") - shows help

Example:
PackageHelp("PackageTools", key="email") - shows email (if it exists for this package)

PackageRemove(name, [quiet])

This function is for programmers to remove a package using PackageTools.

name string name of the package

quiet optional variable to tell whether to print to history (0) or not (1)
default: missing value is same as printing to history (quiet = 0 )

A package is removed in the following way:

• First, a check is done whether the package has been set up using PackageTools. If not, nothing
is done.

• Next, a check is done if removable exists for the package. If not, nothing is done.

• Next, a check is done if removable = 0. If so, nothing is done.

• At this point, validation is requested to remove the package. If removing the package is permitted,
the function then continues.

• First, it kills the package folder (as set by folder key in the PackageSetup(. . .) function).

• Then, it deletes any #include statements within the main procedure window that reference to
the procedure file for the package (as set by file key in the PackageSetup(. . .) function).

• Finally, it closes and removes the procedure file for the package (as set by file key in the
PackageSetup(. . .) function).

When quiet = 0 (default), this function will request conformation from a user to remove a given
package. Otherwise it proceeds without confirmation to try to remove the package using the above
steps. Confirmation is given in the history window and in the log at the end of successfully removing
a package,



6 Igor Pro Package

Example:
PackageRemove("PackageTools") - shows warning because this package has removable = 0

PackageExists(name)

This function returns 0 if the package has not been set up with PackageTools or 1 otherwise. It
also sets a global V_exists in the current data folder to the same value.

5 For Programmers

5.1 Introduction

You may have a package that will make use functions in PackageTools and wish to require that your
users install it along with your package. Please be sure to make your users aware of exactly what
is needed in this case. You should thoroughly check the installation on your own system before
distributing instructions to your users.

You may instead want to use functions in PackageTools but be able to handle those cases where
your users do not install PackageTools or install it incorrectly. I call this mode of use “benefiting
by but not requiring PackageTools” for operation. In such cases, when you are going to call any of
the functions in PackageTools, you should do your own internal error checking after the function
call and/or protect the function calls by using an Execute/Q/Z statement.

When you want your package to comply with PackageTools, you should do two things. First,
you should establish the proper header portion of your procedure file. Then, you should set up a
proper function that will be run by PackageTools after Igor Pro compiles.

5.2 Example Header for a Procedure File

This shows the header portion of the procedure file for PackageTools. See also the example that is
distributed with the package. This portion of code belongs at the top of your procedure file. Make
changes to the quoted strings and variables to fit your procedure file.



PackageTools 7

// pragmas for the procedure

// (see the Igor Pro manual for details)

#pragma rtGlobals=1

#pragma IgorVersion=6.20

#pragma version=1.2

#pragma hide=1

// you may or may not have a module or independent module name for your procedure

#pragma ModuleName=PackageTools

// package parameters to work with PackageTools

// define whichever of these you need for your package

Static StrConstant thePackage="PackageTools"

Static StrConstant thePackageFolder="root:Packages:PackageTools"

Static StrConstant theProcedureFile = "PackageTools.ipf"

Static StrConstant thePackageInfo = "Tools to manage packages"

Static StrConstant thePackageAuthor = "Jeffrey J Weimer"

Static Constant thePackageVersion = 1.2

Static Constant hasHelp = 0

Static Constant removable = 0

// here is one way to define other PackageTools parameters

Static StrConstant more = "email:jjw@usa.world; phone:888-888-8888;techsupport:NONE;"

5.3 Setting Up or Updating Your Package

As a programmer, you have a number of choices that you can use to tap into the set up or update
functions using PackageTools.

5.3.1 Calling the Routines Directly

You are free to call any of the functions in PackageTools at any point from any place in your
procedure. For example, when you have a package that installs a panel for the user as the first
step, you might call the function PackageSetup(. . .) or PackageUpdate(. . .) just before or just after
the panel is displayed. Any time you want to display a help file or the information about your
package, you can call the PackageHelp(. . .) function. Finally, anytime you want to assure that your
package is removed properly, you can call the PackageRemove(. . .) function.



8 Igor Pro Package

5.3.2 Using a PTAfterCompile_ Hook Function

After Igor Pro compiles, PackageTools is set to run all functions that have the form shown below.

Function PTAfterCompile_Name()

In the function name, the only part that must be different is the Name portion. This is a unique
(short) name that you give to distinguish your function from every other function. You may want
for example to make Name be an abbreviation for your package, such as

Function PTAfterCompile_MyFitRoutine()

Be aware of three things in setting up your function. First, the name must be unique to all
possible variations that all possible users of PackageTools may eventually have. Secondly, the entire
function name (including the prefix) must be shorter than the 31 character limit established in Igor
Pro. Finally, the function itself must not be a Static function (it must be visible in scope when
encased in a module or an independent module).

The example code that follows shows a function to run after compiling that will either set up
or update your package parameters using PackageTools. It presumes that you have set up a header
file in your procedure using the terminology given in the previous section. The code is specifically
designed to run correctly regardless of how a user decides to include your procedure file in the
experiment. In particular, this code will run when a) a user opens the procedure file and then
compiles Igor Pro, b) uses #include to include your procedure file from the User Procedures or Igor
Procedures folder, or c) has a #include statement within his or her own procedure file to include
your procedure file, even when the originating procedure file is a module or independent module.
The code is also designed to return without executing an initialization if the PackageTools package
is not installed properly or has not yet been initialized. The code also presumes that your procedure
may be in a module named MyModuleName. Otherwise set that portion to be blank.

Note: Using an #include within an independent module to include another independent module
will never work properly, as the Igor Pro manual clearly states. This case is therefore never
considered in the outline of the code given.



PackageTools 9

// the hook function called by PackageTools after a compile

Function PTAfterCompile_MyPackage()

string theCmd

string GIMN = GetIndependentModuleName()

// set myModuleName to "" when not using a ModuleName pragma

// (such as when this code is in an IndependentModule)

// or remove the line and modify the the command after it appropriately

string myModuleName = "MyModuleName#"

sprintf theCmd, "%sInitialize()", myModuleName

if (strlen(GIMN)!=0)

sprintf theCmd, "%s#%s", GIMN, theCmd

endif

Execute/Q/Z theCmd

return 0

End

// the initialization function called by the hook function

// the static designation is not needed when this function is in an IndependentModule

Static Function Initialize()

string theCmd

sprintf theCmd, "ProcGlobal#PackageExists(\"%s\")", thePackage

Execute/Q/Z theCmd

NVAR V_exists

if (NVAR_exists(V_exists))

sprintf theCmd,"\"%s\"", thePackage

sprintf theCmd, "%s,folder=\"%s\"", theCmd, thePackageFolder

sprintf theCmd, "%s,file=\"%s\"", theCmd, theProcedureFile

sprintf theCmd, "%s,info=\"%s\"", theCmd, thePackageInfo

sprintf theCmd "%s,author=\"%s\"", theCmd, thePackageAuthor

sprintf theCmd, "%s,version=%f", theCmd, thePackageVersion

sprintf theCmd, "%s,hasHelp=%d", theCmd, hasHelp

switch(V_exists)

case 0:

sprintf theCmd, "ProcGlobal#PackageSetup(%s)", theCmd

break

case 1:

sprintf theCmd, "ProcGlobal#PackageUpdate(%s)", theCmd

break

endswitch

Execute/Q/Z theCmd

endif

return 0

End



10 Igor Pro Package

5.3.3 General Guidelines

• Setting up a package using PackageTools is not the same as creating a specific Package folder for
it. That is the responsibility of your package to do.

• As best possible, you should have only one place where your procedure file calls on the func-
tionality of PackageTools. Especially avoid designing duplicate ways to call the setup or update
functions at more than one point in your procedure file. Some further suggestions on this point
are as follows:

– When your package creates its own Package folder in an experiment as part of its own inter-
nal initialization process, you should call PackageSetup(. . .) or PackageUpdate(. . .) directly
afterward to have PackageTools record it in its log.

– As a general rule, you should use the PTAfterCompile_ hook function method to set up your
package with PackageTools only when your package does not create its own Package folder
as part of its initialization process. Otherwise, use the method suggested above.

– You may consider writing your own AfterCompiledHook() function as provided by Igor Pro
and call the setup routines in PackageTools from within that function. When you do this, do
not also put a PTAfterCompile_ hook function in your procedure file. No danger is expected,
however no guarantee is given that no problems will ever arise by having two redundant
ways to handle hooks after compile.

• Calls to PackageSetup or PackageUpdate are supposed to return as directly as possible. When the
key for a package already exists, a call to PackageSetup will return immediately with no changes
made. Calls to PackageUpdate check for the existence of every possible (optional) key but update
only those that are given.

• Checking for the existence of V_exist after calling PackageExists confirms whether PackageTools
has or has not been installed properly. When PackageTools is installed properly, V_exists will
exist. This check will work even with a blank package name, as in PackageExists(“”).

• Checking for the value of V_exist after calling PackageExists only confirms that PackageTools
has or has not set up the package. It does not always confirm that a package has been set up
properly by its own internal initialization process.


	Introduction
	Benefits
	Installation
	Functions
	Restricted (Static) Functions
	Common (Non-Static) Functions

	For Programmers
	Introduction
	Example Header for a Procedure File
	Setting Up or Updating Your Package
	Calling the Routines Directly
	Using a PTAfterCompile_ Hook Function
	General Guidelines



