
8/12/09 SARFIA Help file.ihf 1

• Ana lLS
AnalLS analyses linescan data generated with ScanImage. These are usually present as
image stacks, only that lines in an image represent subsequent recordings of the same
line.

Note: Required include files are:
LoadScanImage.ipf

See also: LoadScanImage

AnalLS (LSwave, start, stop)
This operation extracts the average brightness of a one-dimensional ROI over time (if
the data has been generated in ScanImage and loaded using the LoadScanImage function)
or frame number. Start and stop are the left and right pixels (!) of the ROI. The
resulting wave will be named nameofwave(LSwave)+"_LS" and contain the
normalised fluorescence, ∆F/F.

Ca l lAna lLS ()
This operation calls AnalLS and prompts the user for parameters. This function is
useful to be placed in a menu for quick access.

• AutoRegistrat ion
Use this operation to call RegisterStack on multiple files in a folder. This is useful for
registering a large number of image stacks overnight or while away from the
computer. Call AutoRegistration() and specify one or many .tiff files. These will be
sequentially loaded, registered and saved as Igor binary files in the origin folder.

Note: Required include files are:
LoadScanImage.ipf
RegisterStack

• CenterOfMass
The functions in CenterOfMass are used for calculating centers of mass of regions of
interest based on brightness, displaying them and measuring distances between curves
(waves) and points.

CenterOfMass (image,ROI)
This operation calculates the center of mass for ROIs based on the intensity of image.
The ROI wave ROI must be a MultiROI ROI wave. The result will be stored in the two-
dimenasional wave CoM. CoM[][0] contains the scaled X data, CoM[][1] contains the
scaled Y data. The precision of CoM is higher than that of pixels in image.

See also: MultiROI ROI wave

CoMDistances (CoM, [index])

8/12/09 SARFIA Help file.ihf 2
This operation calculates the (scaled) distances between all CoMs in wave CoM and
returns the result as the matrix DistanceMatrix. The optional parameter index can be
used to spexify the layer of a compound CoM wave (as returned by the operation
ComByLayer.

DistanceMatrix2Colum (DistanceMatrix, [index])
This operation puts all distances of the distancematrix DistanceMatrix in a single
column of the wave DM2C, so that these date can be used for a histogram, clustering,
etc. If the optional parameter index = 1, the output wave, DM2C, has three columns,
the first one holds the distances between two traces, the second and the third hold the
index of the traces that the distance was measured between.

See also: HiClu, HiClu2D, HiCluCP

GeometricCenter (ROI)
This operation calculates the geometric center for ROIs in the MultiROI ROI wave ROI.
The result will be stored in the two-dimenasional wave GeoC. GeoC[][0] contains the
scaled X data, GeoC[][1] contains the scaled Y data. The precision of CoM is higher than
that of pixels in ROI.

ShortestDistance (func, relX, relY)
This function returns the shortest distance between a function func (1D wave) and a
point, defined by relX and relY. The wave has to be scaled, as have the points.

See also: ShortestDistance2

ShortestDistance2 (xfunc,yfunc, relX, relY)
This function returns the shortest distance between a curve, defined by xfunc and
yfunc and a point, defined by relX and relY. Waves and points have to be scaled.

See also: ShortestDistance

DrawCoMNumbers (CoMWave, bgimg, WindowName, [fontsize])
This function draws the ROI numbers as stored in COMWave at the position of the
center of mass in the window WindowName. bgimg is needed to get the dimension of the
background image, which should be displayed in WindowName. Fontsize is optional and
useful for very large images, as fonts don't scale when the image size is changed.

Note: Numbers are drawn relative to the borders of the window, not the image.
Therefore changing the axes won't affect the drawn numbers. Also note that the origin
of the image is expected to be in the lower left. If the image is to be displayed with the
origin in the upper left, the function has to be adjusted accordingly. A comment in the
function points out where this has to be done.

Related Topics: ResultsByCoef

• Customcolor

8/12/09 SARFIA Help file.ihf 3
rainbowLUT (levels, outputwave)
This function generates a rainbow lookup table with a number of different colours
equal to levels. Outputwave will be the name of the so generated lookup table. This
function is called automatically in QuickAnal in order to generate as many colours as
there are regions of interest.

Related Topics: ModifyImage

• D i f fe rence
The functions in Difference are used to calculate a "difference image", i.e. subtract a
baseline image from a response image. Usually, frames over a specified time interval
are averaged to generate the baseline and response images. Thes functions are called
from the ImageAnalysis Control Panel, when "Response" is selected as the
thresholding method.

RunDifference (stack3D, startbaselineF, stopbaselineF, startresponseF,
stopresponseF)

This function calculates the difference image by averaging frames in stack3D from
startbaselineF to stopbaselineF to calculate the baseline image and by averaging
frames from startresponseF to stopresponseF to calculate the the response image. The
resulting image is named NameOfWave(stack3D)+"_RES".

GetTimes (stack3d, name)
This function calls prompts to enter start and stop times and then calls RunDifference
using these variables.

Note: Required include file:
z-project.ipf

• dif_ image
The functions in dif_image are used to generate the 2nd derivative of grayscale images
and threshold these.

dif_image (image, [targetname])
This function calculates the 2nd derivative of image in the x and y axis and sums them.
The optional parameter targetname is the name of the so calculated image. If left out,
the name will be nameofwave(image)+"_dif".

dif_image3D (image, [targetname])
This function calculates the 2nd derivative of the voluma data image in the x, y and z
axis and sums them. The optional parameter targetname is the name of the so
calculated image. If left out, the name will be nameofwave(image)+"_dif".

difloop (imagestack, [targetname])
This function calculates the 2nd derivative of imagestack in the x and y axis and sums
them for each frame. The optional parameter targetname is the name of the so
calculated image. If left out, the name will be nameofwave(image)+"_dif".

8/12/09 SARFIA Help file.ihf 4
mod_img (image, i_limit, [targetname])
This function performs (negative) thresholding on image:
First, pixels with a value larger than -i_limit will be set 1 (outside ROI), then those
with a value <= 0 will be set 0 (inside ROI.) The optional parameter targetname is the
name of the so calculated image. If left out, the name will be
nameofwave(image)+"_mod".

Note: The threshold, i_limit, is not normalized to image within this function. When
mod_img is called from ManThresh, however, the input to i_limit is first multiplied
by the standard devation of image so that similar levels will yield similar results
independent of absolute values in image.

xydif_image (image, [targetname])
This function calculates the 1st derivative of image in the x and y axis, and thus
returns two images. The optional parameter targetname is the name of the so
calculated images which "_x" and "_y" appended to their names. If left out, the names
will be nameofwave(image)+"_difx" and nameofwave(image)+"_dify". This function
is not called in automated analysis, but left for completeness.

• Equal izeScal ing
These functions quickly transfer scaling or size from one wave to another, even if the
numbers of dimensions mismatch.

CopyScaling (source, destination)
This function applies point-by-point scaling from source in all 4 dimensions plus the
data full scale to destination and copies the wavenote. Source and destination don't need
to have the same number of dimensions. If source, for instance, has 3 dimsensions,
but destination only 2, then those 2 will be appropriately scaled.

Note: Dimension labels are not transferred.

CopySize (source, destination)
This function applies the length of the respecive axes from source to destination,
regardless of the number of points. It also copies the data full scale and the wave note.
This is useful, for instance, after resampling or pixelating an image.

Related Topics: SetScale, ImageInterpolate

• ExpDataBase2
These functions combine PopulationWaves and associated results into a database and
allow extraction of data from a database. Version 1 operated by an entirely different
principle and was never adopted by the community.

Databases can be built by launching the control panel, EDB2_CP. Information can be
extracted using custom functions. A template is given in ExpDB2_Extraction.

The PopWaveBrowser3 allows browsing of databases and viewing/changing associated
information.

8/12/09 SARFIA Help file.ihf 5
Data is stored by adding a "footer" to the end of a PopulationWave that stores
associated information as well as scaling, name of origin, etc., making use of Igor's
Dimension Labels. Waves with different numbers of points can be combined, the
resulting database will leave the appropriate fields of waves with less points empty
(i.e. contain NaN). This allows analysis of the associated information in respect to the
original traces, or other associated information. For instance, one can compare traces
obtained at diiferent ages, or check whether there is correlation of age with size (see
figure).

Storage model of the database

Global and local constants
The following global constants are defined at the top of the procedure file. Some will
need adjustment for different users:

8/12/09 SARFIA Help file.ihf 6
k_LabelList is a list of labels that are stored with the database. The defaults list is
(beware the linebreaks):

k_LabelList="ROINr;Age;Position;Size;ONOFF;TSus;Stim;BaseLine;Experimenter;Analys
isBitMask;nPoints;XDelta;XOffSet;XUnit;OriginID"

k_NaturalUnits is a list of SI units that the wave scaling can assume. More can be
added at the end, as they are index-coded. However, Igor might not scale them
normally. For instance, if the unit is inces ("in"), then thousands of them will
become kiloinches ("kin"). Why do you think did we come up with SI units in the first
place?

k_Experimenter is a list of people analysing experiments. This helps keeping track of
who analyzed an experiment. If this is changed after some databases have been built,
add names at the end, as the names are index-coded.

k_Template is the template for names of PopulationWaves that will be added to the
database using the GrepString operation. Associated information is contained in waves
that have specific suffixes to their names (see next point).

k_Suffixes specifies the name suffix of waves containing a certain type of information
that will be added to the database.

k_Autodetect is a list of labels that will be detected automatically, based on whether
waves with the appropriate name+suffix are present

See also: ExpDB2_Extraction, PopulationWave, GrepString and Regular Expressions

BuildDataBaseFromSubFolders ([Template])
This function screens all subfolder for waves whose name matches Template (default:
see Global and local constants) and compiles them into a new database.

CombineDataBases (ListWave)
This function combines (proto-)database waves referenced in the reference wave
ListWave into a single database, combining the labels of all of them, if they are
different. See the example of how to make a reference wave.

Example:
make/wave ListWave
ListWave = {DataBase1, DataBase2, DataBase3} //no duoble quotes
CombineDataBases(ListWave)

See also: Wave reference waves

DBFooter (PopWave, [LabelList,ResultName])
This function appends a footer to PopWave and thus converts it to a proto-database.
The following fields are automatically filled in: ROINr, nPoints, XDelta, XOffSet,
XUnit, OriginID. The optional parameter LabelList specifies the labels that are added
(default is the constant k_LabelList). The optional parameter ResultName specifies
the name of the resulting wave (default: "F0_"+NameOfWave(PopWave)). The
function returns the resulting wave reference.

8/12/09 SARFIA Help file.ihf 7
EDB2_CP ()
This function launches the control panel to specify a populationwave and waves
containing associated information to be compiled into a database. If an existing
database is selected, the new information will be appended, otherwise a new proto-
database will be created.

TraceFromDB (DataBase, index, [ResultName])
This function extracts a single trace from DataBase at index index and returns it as
ResultName (the default is the name of the original wave+"_"+Num2Str(index).

See also: PopFromDB

MakeDataBase (wList,[LabelList])
This function makes proto-databases out of the PopulationWaves referenced in the
reference wave wList and combines them into a single database. It also checks if
waves specified by the local constants k_Suffixes and k_AutoDetect are present and
adds their data in the respective fields.
The optional parameter LabelList specifies the labels that are added (default is the
constant k_LabelList). The resulting database wave is returned by the function. See
the example of how to make a reference wave.

Example:
make/wave ListWave
ListWave = {PopWave1, PopWave2, PopWave3} //no duoble quotes
CombineDataBases(ListWave)

See also: Wave reference waves

PopFromDB (DataBase, [ResultName])
This function removes the footer from DataBase and applies the wave scaling, thus
making it into a PopulationWave. However, this works only if all the traces in
DataBase have the same number of points and scaling in the x dimension. The result is
returned as ResultName (default: NameOfWave(DataBase)+"_Pop")

See also: TraceFromDB

• ExpDB2_Extract ion
This function provides a template to programatically extract information from an
ExpDataBase2 database.

Related Topics: ExpDataBase2, Bitwise and Logical Operators

• GammaCorrCP
This control panel allows the change of the gamma value for a grayscale image. It
actually creates a lookup table, rather than changing the image values. Note that
changing the gamma value of an image constitutes a non-linear adjustment which has
to be disclosed in most scientific journals.

8/12/09 SARFIA Help file.ihf 8

• HClu
The functions in HClu are used for the implementation of hierarchical clustering
algorithms of time-series data (in the form of a PopulationWave).

NormalizeTraces (PopWave, options)
This function normalizes traces in the PopulationWave PopWave from 0 to 1 (options
bit 0 set) and then divides by its standard deviation (options bit 1 set)

See also: Setting Bit Parameters

BinPop (PopWave, ResultName, nBins, [smth])
This function changes the y data from PopWave into nBins bins and returns the result
as $ResultName. The optional paramether smth is the number of smoothing operations
to be applied for binomial smoothing (default: 0, ie no smoothing).

See also: Smooth

PopDistances (PopWave, options)
This function calculates a distance matrix of all traces in PopWave. The metering
method is specified by options:

options = 0 Euclidean
options = 1 Chebychev
options = 2 Hamming after binning with 5 bins, smoothing 5
options = 3 Chebychev after binning with 5 bins, smoothing 5
options = 4 normalized Euclidean
options = 5 Pearson distance (Pearson distance = 1 - Pearson's R)
options = 6 Manhattan

HiClu (Sorted, cutoff)
This function calculates the membership of traces in sorted according to cutoff. Sorted
is a wave with three columns, the first one holds the distances between two traces, the
second and the third hold the index of the traces that the distance was measured
between. Sorted is ususally the output of the function DistanceMatrix2Column, with
the optional parameter index = 1 that has been sorted by the function SortByFirst.
The resulting wave, DM2C, holds the number of the cluster respective traces,
specified by the row (i.e. [p]), belong to. Traces are added by single linkage (a.k.a.
nearest neighbor clustering) to clusters, i.e. if the distance to any trace in a cluster
is less than cutoff.

See also: HCluCP

HiClu2D (Sorted)
This function calculates the nodes where subclusters of traces in sorted converge
with higher clusters in a dendrogram. Sorted is a wave with three columns, the first
one holds the distances between two traces, the second and the third hold the index of
the traces that the distance was measured between. Sorted is ususally the output of the
function DistanceMatrix2Column, with the optional parameter index = 1 that has been
sorted by the function SortByFirst. The resulting wave, Clusters2D holds the number
of the cluster respective traces, specified by the row (i.e. [p]), belong to. Each
column represents one iteration, so that in the first column each trace is a cluster on

8/12/09 SARFIA Help file.ihf 9
its own, and in the last column all traces belong to the same cluster. The wave
Cluster_Dist holds the absolute distances for each column.

See also: HCluCP

SortByFirst (DM2C, rev)
This function sorts the three-column wave DM2C by the entries in the first colum. If
rev > 0, sorting is done in ascending order, else in descending order. This function
returns a wave named NameofWave(DM2C)+"_s".

Renumber1D (wv)
This function renumbers the integer numbers in wv so that all copnsecutive numbers
are present and none are left out.

• HiC luCP
This function launches the control panel for hierarchical clustering. Functions are
called in the following order:

(optional) NormaliseTraces
PopDistances
DistanceMatrix2Column
SortByFirst
HiClu

• IPLPosCP
This function launches a control panel to access functions to determine the position of
regions of interest in a layered structure.

Overview
Following steps will be executed:
1. Calculating centers of mass of the regions of interest.
2. Determining the borders of the structure, either by thresholding or free-hand

drawing.
3. Interpolating the borders to have 8 times the number of points than the X

dimension has pixels and smoothing by applying the robust form of the Loess
algorithm.

4. Calculating percentiles between the two borders.
5. Determinig the percentile closest to each center of mass.

See also: CenterOfMass, Interpolate2, IPLPosition, Loess

The Panel
First, a grayscale image of the desired structure and an image specifying the regions
of interest have to be specified in the appropriate pull-down menus. The latter has to
be a MultiROI ROI wave. Then, a method for thresholding the borders has to be
selected. Iterative works well, if a bright structure is well separated from the
background and no other bright structures are present. If this fails, Manual Treshold
may still work. Borders can always be specified by Manual Drawing, where the user
has to draw points along the borders.

8/12/09 SARFIA Help file.ihf 10
When Start is clicked, centers of mass for the regions of interest will be calculated
and the thresholding applied. If Manual Drawing has been selected, then the user will
be prompted to draw the borders (see below). The results are then displayed:
Three coloured lines: red, cyan and yellow, as well as the centers of mass.

The user has to specify, which of these lines is at the top, i.e. 100% (by definition,
this is the photoreceptor side in the inner plexiform layer) and which at the bottom,
i.e. 0% (ganglion cell side in the inner plexiform layer). Since automated
thresholding sometimes breaks a border, two can be specified for either top or
bottom.

Clicking Continue will then calculate the percentage for each center of mass and store
them in the wave positions.

The panel can be closed by clicking the button Clean Up or Leave a Mess!. The former
will keep only the wave positions and kill all intermediates, while the latter will keep
all the waves generated in the procedure and only remove gloval variables associated
with the panel.

The IPL Measurement Panel

Manual Drawing
If Manual Drawing has been selected, then clicking Start will open a new window in
which the background image is shown. By clicking in this window the user can specify
points, between which a line will be drawn. When finished, double-click in the
window and close it. This procedure is then repeated for the second border. After the
second window has been dismissed, the results will be shown in the panel. Note that
the lines specified by the user will be interpolated and smoothed.

Related Topics: CenterOfMass, IPLPosition, MultiROI ROI wave

• IPLPos it ion
These functions are used for determining the positions of regions of interest within a
layered structure. They were written to analyse data from the inner plexiform layer

8/12/09 SARFIA Help file.ihf 11
of the retina, but may work for other layered structures as well. These functions are
best accessed by the function IPLPosCP which is in the file IPLPosCP.ipf.

Note: Required include files are:
CenterOfMass.ipf
NaNBust.ipf

Horizontal(Xfunc, Yfunc)
This function returns 1, if Yfunc vs Xfunc is roughly horizontal, and 0 if it is more
vertical.
Horizontality is determined by first dividing the waves by their maximum value, then
differentiating them. Then the maxima (maxX and maxY) and minima (minX and
minY) of the derivatives are calculated. If the product of the maxX * minX is larger or
equal to the product of maxY * minY, then 1 returned, else 0.

InterpAndLoess (XWave,YWave,interpNumber, [SmoothNumber])
This function interpolates the curve YWave vs XWave linearly to interpNumber of
points and then smoothes YWave vs XWave using locally-weighted regression
smoothing with a factor of SmoothNumber (0<SmoothNumber<1; default = 0.5).

See Also: Interpolate2, Loess

MeasureDistances (CoM, BottomX, BottomY, TopX, TopY)
This function calculates the relative distance of centers of mass (stored in CoM) from
the borders BottomY vs BottomX and TopY vs TopX. The top border is by definition
100%, the bottom 0%. The results are stored in the wave Positions.

This is achieved by first calculating percentiles between the two borders and then
determining which of the percentile lies closest to each of the points. CoM is a two-
dimensional wave, where Y coordinates are stored in CoM[][1] and X coordinates in
CoM[][0].

Note: Points outside the borders will not be calculated precisely, but are assigned
values of -1 or 101. You might want to remove them before doing any statistics.

See Also: CenterOfMass

QuickPA (image, size, method, [level])
This function applies particle analysis using a predetermined set of parameters.
Image is the wave containing the image to be analysed, size is the minimum size in
pixels for particles found, method specifies the thresholding method (see
ImageThreshold for more details) and the optional parameter level is used if manual
thresholding (method=0) is selected.

After removing extreme values (i.e. those coinciding with the borders of the image),
the three longest contingent borders are returned as the waves
TopY vs TopX,
BottomY vs BottomX, and
ThirdY vs ThirdX

Note: While pairs of point match in all of these resulting Y vs X waves, they might

8/12/09 SARFIA Help file.ihf 12
not be ordered in a left-to-right fashion. This depends on the actual symmetry of the
object to be detected. The function reorder has to be used to return them into an
ascending order.

The core function of the code is the following:

ImageThreshold/I/M=(method)/Q image
ImageAnalyzeParticles /f/E/W/Q/M=0/A=(size) stats, M_ImageThresh

//M_ImageThresh is the result of the ImageThreshold operation

See Also: ImageThreshold, ImageAnalyzeParticles

Reorder(XWave,YWave)
This operation reorders pairs of points in YWave vs XWave in ascending order of
XWave.

Thickness(Percentiles)
This operation calculates and prints statistics on the distances between the 0th and
100th percentile in wave percentiles. Percentiles are a result of the
MeasureDistances operation. Since the results are calculated using the WaveStats
operation, its automatically created variables can be used.

See also: WaveStats

• LoadScanImage
The functions in LoadScanImage load gif images, stacks and movies recorded with the
ScanImage plugin for Matlab (Pologruto et al. 2003, Journal Biomed Eng Online) and
extract the information stored in the header. Files saved with other programs will be
loaded, but since the header info is not available, or in a different format, it can't be
used to set wave scaling, splitting channels, etc.

Note: Two constants are set at the top of the procedure file, which may need to be
adjusted between different setups:
Z_factor is the factor by which distances in the z dimension have to be multiplied in
order to return actual distances in µm. This is important only for the correct scaling
of image stacks, but not for single images or movies.
ImageLength is the side length in µm of an image taken at zoom 1. This will, among
other factors, depend on the objective used. This is important to get the correct X and
Y scaling of images.
For time series, the internal clock of the recording computer is assumed to be
correct, so no adjustment is being made.

LoadScanImage ()
This function loads an image or a stack of images and puts them in a 2D or 3D wave
that has the same name as the the image file (without the extension). The header will
be copied nto the wave note. This functions returns the name of the so generated wave
as a string.

Note: On a Macintosh OSX computer, this operation seems to stall the Igor Pro
application with the spinning wait cursor (a.k.a. spinning pizza of death) appearing.

8/12/09 SARFIA Help file.ihf 13
This behaviour is normal (sort of), with the duration of that effect being roughly
proportional to the size of the image file being loaded. Other applications work
normally in that time.

See also: ImageLoad, Note

LoadMovie ()
This function loads multiple images into one 3D wave that has the same name as the
the first image file (without the extension). The header will be copied into the wave
note. This functions returns the name of the so generated wave as a string. This is
usefulto load a timelapse movie that has been acquired in ScanImage.

The user is prompted to specify one file. This file is the first in the sequence to be
loaded. The last three characters of the filename (not the extension) have to be
numbers. This operation will then load all consecutive images in that folder into one
3D wave.

Note: On a Macintosh OSX computer, this operation seems to stall the Igor Pro
application with the spinning wait cursor (a.k.a. spinning pizza of death) appearing.
This behaviour is normal (sort of), with the duration of that effect being roughly
proportional to the size of the image file being loaded. Other applications work
normally in that time.

See also: ImageLoad, Note

ZoomFromHeader (PicWave)
This function returns the zoom factor from the wave note of PicWave.

FramesFromHeader (PicWave)
This function returns the number of frames from the wave note of PicWave.

XRelFromHeader (PicWave)
This function returns the relative X position of the stage from the wave note of
PicWave.

YRelFromHeader (PicWave)
This function returns the relative Y position of the stage from the wave note of
PicWave.

ZRelFromHeader (PicWave)
This function returns the relative Z position of the stage from the wave note of
PicWave.

Fi lePathFromHeader (PicWave)
This function returns the file path wherePicWave was loaded from as a string.

Fi leNameFromHeader (PicWave)
This function returns the file name wherePicWave was loaded from as a string.

8/12/09 SARFIA Help file.ihf 14
msPerLineFromHeader (PicWave)
This function returns the acquisition time for one line in milliseconds from the wave
note of PicWave.

sPerLineFromHeader (PicWave)
This function returns the acquisition time for one line in seconds from the wave note
of PicWave.

ExpDateFromHeader (PicWave)
This function returns the date of the experiment (i.e. when the image was acquired)
from the wave note of PicWave as a string.

ZSlicesFromHeader (PicWave)
This function returns the number of Z slices from the wave note of PicWave. It will be
0, if a movie, rather than a Z stack had been acquired.

ZStepSizeFromHeader (PicWave)
This function returns the Z step size of slices from the wave note of PicWave. This is
the number stored in the header, rather than a distance. This number multiplied by
the constant Z_factor returns the actual distance (in µm).

nChannelsFromHeader (PicWave)
This function returns the number of channels that PicWave was acquired in
(currently 1 - 3).

SplitChannels (PicWave, nChannels)
This function splits PicWave into nChannels stacks, each corresponding to the
recording of a separate channel.

ApplyHeaderInfo (Wave3D)
This function applies X, Y and Z scaling from stored in the wave note to Wave3D. If
Wave3D is a Z stack, then the Z scaling will be a unit of length, if it is a movie, it will
be a unit of time, and if it is a single frame, then only X and Y scaling will be set.

InvertImage (Image)
This function inverts image by calculating v_max - image and returning the result as
NameOfWave(image)+"_inv".

LoadMovie ()
This function lets the user specify a single file on the hard drive. All sequentially
numbered .tiff files with the same base name are loaded into an image stack. The
images must have the same number of pixels in the x and y dimension. Note that the
numbering is taken from the last 3 characters of the filename, e.g., MyFile013.tif
would return 13 as the file's number and attempt to load MyFile014.tif next. The
function automatically stops if no matching file is found in the same directory. Use
this function to load time-lapse data.

See Also: SetScale

8/12/09 SARFIA Help file.ihf 15

• ManThresh
The functions in ManThresh create a panel to threshold a grayscale image. The
resulting MultiROI ROI wave will be saved as MTROIWave.

The thresholding will be performed on the sum of the 2nd derivatives in the X and Y
dimension. Optionally, regions of interest smaller than a given size can be excluded.

See Also: dif_image, MultiROI ROI wave

ManThresh (picwave, startlevels)
This function opens the thresholding panel. Picwave is the grayscale image to be
thresholded, startlevels is the threshold level to be started with. This number is
multiplied by the standard deviation of the 2nd derivative image (see above).
Empirically, 3 is a good number to start.

Calling ManThresh opens two new windows: The control panel and a preview window.
The user changes the threshold level until thei are happy with the preview. By
clicking Save Settings, the result will be saved as MTROIWave. Cancel aborts the
operation and saves no wave. Contrast and Range can be used to change the way picwave
is displayed in the preview window. A Textbox will show how many regions of interest
(ROIs) have been found.

Note: The algorithm to remove ROIs smaller than a given size is very slow with
resolutions over a few thousand pixels. Using the arrows will make Igor calculate all
intermediate steps, so it is better to enter numbers directly.

The ManThresh control panel

8/12/09 SARFIA Help file.ihf 16

• MultiROI ROI wave
The multiROI ROI wave is a concept to encode different regions of interest (ROIs) in a
single mask. Inbuilt functions in Igor use a binary ROI in which pixels with a value of
1 lie outside the ROI, those with a value of 0 inside. MultiROI ROI waves encode
multiple ROIs using increasing negative numbers (-1 based).The function
MultiROIZStack in Z-Project needs a MultiROI ROI wave passed as a parameter.

MultiROI (sourcewave, targetwave)
This operation modifies a binary ROI mask to become a MultiROI ROI wave.
sourcewave is a binary ROI mask in which pixels with a value of 1 lie outside the ROI,
those with a value of 0 inside. The function MultiROI assigns all connected pixels, i.e.
pixels that lie in one of the eight surrounding pixels of any pixel with a value of 0, a
negative number. It scans first line-by-line, increasing the rows at the end of each
line, starting from the origin.
The string targetwave will be the name of the so generated MultiROI ROI mask.

Note: If two pixels are "connected" only on an edge, they will still be assigned the
same ROI number. This behaviour can be changed by commenting out the four
appropriate conditional assignements in the code (i.e. where neither x2 nor y2 is 0).

MultiROIByLayer (sourcewave, targetwave)
This operation calls MultiROI on each layer of the 3D wave sourcewave. The string
targetwave will be the name of the so generated MultiROI ROI mask.

MultiROIStats (image, ROI,[m])
This operation calculates statistics of the ROIs defined by ROImask on image. Set m to
2 in order to calculate the higher statistical moments; The default is 1. The results
are stored in the wave ROIStats. Each row corresponds to an ROI, the different
statistics are stored in columns as follows:

ROIStats[][0] = v_avg Average of pixel values.
ROIStats[][1] = v_min Minimum pixel value.
ROIStats[][2] = v_max Maximum pixel value.
ROIStats[][3] = V_npnts Number of points in the ROI.

(m=2 only):
ROIStats[][4] = v_sdev Standard deviation of pixel values.
ROIStats[][5] = v_rms Root mean squared of pixel values
ROIStats[][6] = v_skew Skewness of pixel values.
ROIStats[][7] = v_kurt Kurtosis of pixel values.
ROIStats[][8] = v_adev Average deviation of pixel values.

See Also: ImageStats

Related Topics: ImageGenerateROIMask, MultiROI, Z-Project

• NaNBust
The functions in NaNBust replace numbers or NaN entries in waves. They are slightly
more comfortable to use than inbuilt functions.

8/12/09 SARFIA Help file.ihf 17
NaNBust (wv, [newnum])
This operation will replace NaN values in the wave wv with 0 or the value of the
optional parameter newnum. The heart of this function is the MatrixOP function:

MatrixOP/o/free NaN_Busted = ReplaceNaNs(wv, newnum)

Replace (wv, findVal, replacementVal)
This operation will replace values equal to replace in the wave wv with the value of
with. The heart of this function is the MatrixOP function:

MatrixOP/o/free w_Replaced = Replace(wv, findVal, replacementVal)

Note: replace can be any number, but not NaN or ±inf. The function NaNBust can be
used in the former case.

Related Topics: MatrixOP, NumType, SelectNumber

• Normal ize
The functions in Normalize normalize waves and images.

IACPNormalize (sourcewave, targetwave)
This operation normalizes sourcewave by dividing it by the average of all points and
then substracting 1. The string targetwave is the name of the so calculated wave.
Hence, the average of $targetwave will be 0.

Note: This function normalizes to the average of all values in sourcewave. Often it is
better to normalize to a baseline. This function is useful, however, if a baseline can
not be automatically determined.

Normalize (wv, from, to, [name])
This operation normalizes all values in the wave wv so that the values will be spread
from from to to. The optional parameter name is the name of the so calculated wave,
the default being nameofwave(wv)+"_nor".

This operation first substracts the smallest value (min) of wv from wv and then adds
from. Then, wv will be multiplied by to and divided by (max - min). Max is the
largest value in wv.

This is essential when a double precision wave is to be saved as an image, as images
can only assume limited values, e.g. from 0 to 255 for 8 bit grayscale, 0 to 65535
for 16 bit grayscale, 0 to 255 in three channels for 24 bit colour, etc.

NormalizePop (sourcewave, targetwave)
This operation normalizes all rows in the populationwave sourcewave by dividing each
column by its average and then substracting 1. The string targetwave is the name of
the so calculated populationwave.

Note: Confusingly, columns of a wave will be plotted against the X axis, while rows
will be plotted against the Y axis in an image.

8/12/09 SARFIA Help file.ihf 18
Note: This function normalizes to the average of a whole column in sourcewave. Often
it is better to normalize to a baseline. This function is useful, however, if a baseline
can not be automatically determined.

See Also: Populationwave

Rectify (sourcewave, targetwave, [direction])
This operation sets all negative values in sourcewave to zero. If the optional
parameter direction is set to a value smaller than zero, all positive values in
sourcewave will be set to zero instead. The string targetwave is the name of the so
calculated wave. The heart of this function is the SelectNumber function:

wv_calc = SelectNumber((wv_calc[p][q][r][s])*direction<0,wv_calc[p][q][r][s],0)

See Also: SelectNumber

• OneCl ickSmooth
The functions in OneClickSmooth provide quick access to Igor's inbuilt image filtering
algorithms, as well as filtering 3D data by principal component analysis (PCA).

FIltering by PCA lets the user choose the number of principal components to keep.
Therefore, a higher number means less filtering.

OCS ()
opens a user interface from which the following parameters can be specified:
Image - The top wave in the top graph will be automatically chosen, but others can be

specified from the pull-down menu.
Method - See the ImageFilter, MatrixFilter and PCA operations for a detailed

description.
Filter Size - In pixels. Odd numbers should be preferred, as these preserve the filter

symmetry. This won't have an effect if the method Hybridmedian has been selected.
If PCA is selected, this number will specify the numbers of principal components
that are not rejected (i.e. kept).

The filtered image will have the same name as the original with "_fil" appended to its
name.

Note: For three dimensional waves (i.e. image stacks or movies) the appropriate 3D
(n xn xn) filters will be used, while 2D (n xn) filters will be used for two
dimensional data. The method Hybridmedian exists only as a 3D filter, for 2D data the
method FindEdges will be used instead. PCA works only on 3D data.

Filter2 (image)
The Filter2 operation works similar to OCS, only that the image to be filtered is
passed as the parameter image. A popup will prompt the user for Method and Filter
Size.

Related Topics: ImageFilter, MatrixFilter, PCA

8/12/09 SARFIA Help file.ihf 19

• Populationwave
A populationwave is a 2D wave that contains multiple 1D waves with the same scaling
and number of points. The X axis scaling/units of a populationwave is the same as the
X axis/units scaling of the 1D waves, while the Y dimension is the index. The data full
scale of the populationwave contains the units of the 1D waves.

The functions in Populationwave generate and separate populationwaves.

AverageWavesFromWindow ()
This operation first stores all traces from the top graph in a populationwave called
WinPop and then calculates the average, SD and SEM of these traces. The results are
stored in the waves W_PopAvg, W_PopSD and W_PopSEM, respectively.
Furthermore, the average trace will be displayed as a bold black trace in the top
window, and the average trace plus error bars (SD) will be displayed in a new graph.

PopulationWave (basename, outputname,number,[offset])
This function generates a apopulationwave of number 1D waves. All 1D waves must
have the same basename basename and end with numbers. The optional parameter
offset specifies the number of the first 1D wave, the default being zero. The string
outputname is the name of the so generated populationwave.

Examples

PopulationWave("MyWave_", "MyPopWave", 10)
//Generates a wave named MyPopWave out of the waves MyWave_0, MyWave_1, ...,
MyWave_9

PopulationWave("MyWave_", "AnotherPopWave", 5, offset=10)
//Generates a wave named AnotherPopWave out of the waves MyWave_10, MyWave_11,
..., MyWave_14.

PopStats(PopWave)
This operation calculates the average, SD and SEM of all lines in the populationwave
PopWave. The results are stored in the waves W_PopAvg, W_PopSD and W_PopSEM,
respectively.

PopWaveFromWindow ()
This operation generates a populationwave out of all waves displayed in the top
window. The resulting populationwave will be named WinPop. This operation works if
lines out of a populationwave are displayed in the top window.

Note: The number of points and the X and data scaling will be taken from the top wave,
as they are assumed to be the same in all waves.

PopX2Traces (PopWave, basename)
This operation reverses the operation PopulationWave: It generates a 1D wave out of
each column of the populationwave PopWave. The string basename will be the
basename of the so generated waves.

PopY2Traces (PopWave, basename)
This operation is similar to PopX2Traces, only that it generates a 1D wave out of each

8/12/09 SARFIA Help file.ihf 20
row of the populationwave PopWave. The string basename will be the basename of the
so generated waves. This is equal to calling PopX2Traces after TransposeXY.

TransposeXY (basename, outputname)
This function swaps rows and columns (and the respecitve scaling) of the wave
basename. The string outputname is the name of the so generated populationwave.
Some inbuilt functions in Igor operate along rows, rather than columns.

• Reg is te rStack
The functions in RegisterStack call the inbuilt operation ImageRegistration with a
predefined set of parameters on a stack of images (3D wave).

Note: ImageRegistration for stacks has been implemented in Igor Pro version 6.1. For
earlier versions, a workaround is implemented that is slower, and probably less
efficient.

See also: ImageRegistration

RegisterStack (picwave, [target])
This operation registers the imagestack picwave. The optional string target is the
name of the registered stack (default: Nameofwave(picwave)+"_reg").

The core of this operation (for Igor Pro 6.1 or later) is:

imageregistration /q /stck /csnr=0 /refm=0 /tstm=0 testwave=regcalcwave,
refwave=ref

Regcalcwave is a duplicate of picwave, ref is the first frame of picwave.

See also: ImageRegistration

Reg2 (picwave)
Works similar to RegisterStack, only that picwave is overwritten.

QuickReg ()
Calls Reg2 on the top wave of the top window.

• Resu l tsByCoef
The operations in ResultsByCoef are used to retrieve a subset of data from a wave.
They are not called in any automated analysis.

Definition: A coeffitients wave as used by operations in this file consists of the
elements one is interested in. For instance, if one was interested in retrieving the data
from traces #3,4, 7 and 8 then one would make a coefficients wave like this:

make /o coef={3,4,7,8}

8/12/09 SARFIA Help file.ihf 21
CoMByCoef (CoM, coef)
This operation retrieves paired data from the (2D) wave CoM stored at the rows
specified in the wave coef and stores them in the wave CbC. ComByCoef is generally
used to retrieve centers of mass but may be applied to other 2D waves that store
paired information.

See also: CenterOfMass

CoMByLayer (Positions, CoM, Layers)
This operation retrieves paired data from the (2D) wave CoM and stores it into the
3D CoMPoP wave with the 3rd dimension reflecting the respective layers. The layers
are separated by the information in the wave layers which stores the center and width
(=2*sigma^2) information in the fashion Layers={center(0), width(0), center(1),
width(1),..., center(n),width(n)} which is compared to the position of each center of
mass, as stored in Positions. A center of mass is supposed to lie in a particular layer
if it is within center±width/2.

See also: IPLPosition, IPLPosCP

ResultsByCat (data,catWave,category)
his operation retrieves data from the (1D) wave data if the variable category matches
the entry of the wave catWave at that index.

ResultsByCoef (data,coef)
This operation retrieves data from the (1D) wave data stored in the points specified
in the wave coef and stores them in the wave results.

Example:

make /o data={2,1,3,5,6,8,11,4,7}
make /o coef={0,4,5,7}
resultsbycoef(data,coef)
print results // prints Results[0]= {2,6,8,4}

Related Topics: CenterOfMass, PopulationWave

• ROIS ize
The operations in ROISize determine the sizes of regions of interest (ROIs) in a
multiROI ROI wave, remove ROIs below a certain size and renumber them.

C learROIMarquee ()
To use this operation, first display a multiROI ROI wave, then drag a marquee over an
area where the ROIs are to be removed. ClearROIMarquee then removes all ROIs
within a selected marquee and renumbers them.
For quick access, this function should be placed in a menu.

RemoveROI (ROIwave, threshold)

8/12/09 SARFIA Help file.ihf 22
This operation removes all ROIs in the multiROI ROI wave ROIwave whose size is
smaller than or equal to threshold. The result is stored in the wave ROI_edit.

RenumberROI (ROIwave)
This operation renumbers all ROIs in the multiROI ROI wave ROIwave in order to
account for numbers that have been removed.

ROISize (ROIwave)
This operation determines the sizes in pixels of regions of interest (ROIs) in the
multiROI ROI wave ROIwave and stores them in the wave Size. More statistics can be
calculated using MultiROIStats.

• RotateFunct ion
The operations in RotateFunction rotate functions (i.e. scaled 1D waves or two 1D
waves specifying x and y coordinates waves), images, image stacks or 2-column
waves specifying x and y coorinates (such as the output of CenterOfMass) in the x/y
plane.

RotateFunction1 (func, angle,CenterX,CenterY)
This operation rotates func angle degrees around the coordinates specified by CenterX
and CenterY. The x scaling is taken from the scaling of func. The output are two waves,
rot_x and rot_y, which can be displayed using the following command:

Display rot_y vs rot_x

RotateFunction2 (func, angle,CenterX,CenterY)
This operation rotates Yfunc vs XFunc angle degrees around the coordinates specified
by CenterX and CenterY. The output are two waves, rot_x and rot_y, which can be
displayed using the following command:

Display rot_y vs rot_x

RotateImage (image, angle)
This operation rotates the image or image stack image angle degrees (specified if the
origin is in the lower left) around its center. This function preserves the pixel values
and looks for the closest matching pixel to put them in, thus no interpolation is
performed, which is the main difference to ImageRotate. The output is the wave
W_RotatedImage.

RotateImage (CoM, image, angle)
This operation rotates CoM around the center of image by angle degrees. CoM is a 2-
column wave specifying x and y coorinates (such as the output of CenterOfMass). The
output is CoM_rot.

• RotateGUI
RotateGUI() calls a panel to specify parameters for rotating an image or image stack
in the x/y plane. Matrix Rotation calls the custom-written function RotateImage,
which preserves pixel values, i.e. does not interpolate. Image Rotation, which calls

8/12/09 SARFIA Help file.ihf 23
ImageRotate, however, is much faster.

• SaveT i f f
This operation saves a 2D or 3D wave as a tiff image.

Note: Normalize.ipf is a required include file.

SaveTiff (wv, [depth])
This operation saves the image or image stack wv as a tiff file. The optional parameter
depth specifies the bit depth of the tiff file (default is 16). Only following bit depths
are allowed: 1, 8, 16, 24, 32, 40.

The user will be prompted for a location and a file name.

Related Topics: Normalize

• Z-Pro ject
The operations in Z-Project analyse or modify stacks of grayscale images, i.e. movies
or volume data.

Definitions:
ROI...region of interest
Image stack...a stack of grayscale images, 4 dimensions (x,y,z, intensity). Stored

in a 3D (!) wave
Image...a grayscale image, 3 dimensions (x, y, intensity). Stored in a 2D (!) wave.
Trace...a trace, 2 dimensions (x, y), stored in a 1D (!) wave.
Populationwave...a 2D wave that stores several traces. The trace number is encoded

in the y dimension, while the y value of the traces is stored as the
intensity.

Note: Required include files are:
MultiRoi.ipf
EqualizeScaling.ipf

See also: EqualizeScaling, PopulationWave, MultiROI ROI wave

AvgZ (picwave, outputwave)
This operation averages all layers of the image stack picwave using the inbuilt
function:

imagetransform averageimage picwave

The string outputwave will be the name of the so generated image M_AveImage. The
new image will have the same x and y scaling as picwave.

See also: Imagetransform

8/12/09 SARFIA Help file.ihf 24
StdevZ (picwave, outputwave)
This operation averages all layers of the image stack picwave and returns the image
showing the standard deviation using the inbuilt function:

imagetransform averageimage picwave

The string outputwave will be the name of the so generated image M_StdvImage. The
new image will have the same x and y scaling as picwave. The string outputwave will
be the name of the so generated image stack.

MaxZ(picwave, outputwave)
MaxZ generates a single image out of the stack picwave whose pixel intensities
represent the maximum values of all layers of picwave. The string outputwave will be
the name of the so generated image. The new image will have the same x and y scaling
as picwave.

MinZ (picwave, outputwave)
MinZ generates a single image out of the stack picwave whose pixel intensities
represent the minimum values of all layers of picwave. The string outputwave will be
the name of the so generated image. The new image will have the same x and y scaling
as picwave.

RangeZ (picwave, outputwave)
RangeZ generates a single image out of the stack picwave whose pixel intensities
represent the maximum minus minimum values (range) of all layers of picwave. The
string outputwave will be the name of the so generated image. The new image will have
the same x and y scaling as picwave.

zStack (picwave, outputwave, roiwave)
zStack returns a Z-stack of all layers in the image stack picwave, averaging all pixels
in picwave whose value in roiwave is 0. Obviously, picwave and roiwave must have
the same number of pixels in the x and y dimension. roiwave is two-dimensional. The
string outputwave will be the name of the so generated trace, whose x scaling will be
the same as the z scaling of picwave, while its y scaling will not be set.

MultiROIZstack (picwave, outputwave, roiwave)
MultiROIZstack returns multiple Z-stacks of all layers in the image stack picwave,
averaging all pixels in picwave that have the same negative value in roiwave. The
string outputwave will be the name of the so generated 2D wave (a populationwave),
whose x scaling will be the same as the z scaling of picwave. roiwave must be a
MultiROI ROI wave, in which increasing negative numbers (-1 based) encode
different ROIs.

SubstBG (picwave, outputwave, roiwave)
SubstBG returns an image stack with the same scaling as picwave that has the average
intensity of all pixels with a value of 0 in roiwave substracted from picwave on a
layer-by-layer basis. Obviously, picwave and roiwave must have the same number of
pixels in the x and y dimension. roiwave is two-dimensional. The string outputwave
will be the name of the so generated image stack.

8/12/09 SARFIA Help file.ihf 25
NormBG (picwave, outputwave, roiwave)
NormBG returns an image stack with the same scaling as picwave. The result is
picwave divided by the average intensity of all pixels with a value of 0 in roiwave
minus 1, on a layer-by-layer basis. Obviously, picwave and roiwave must have the
same number of pixels in the x and y dimension. roiwave is two-dimensional. The
string outputwave will be the name of the so generated image stack.

See also: PopulationWave, MultiROI ROI wave

SubstBGPoly (picwave, outputwave, roiwave, order)
This operation calls the function

imageremovebackground /r=roiwave /p=(order) frame

which removes a general background level, described by a polynomial of a specified
order order, from the image in picwave layer by layer, which is copied into the wave
frame. The string outputwave will be the name of the so generated image stack.

Note: This function is experimental and is not called by any automated image analysis
procedures.

See also: ImageRemoveBackground

Related Topics: EqualizeScaling

