
Autocorrelation analysis of infrared spectra from minerals

EKHARD K.H. SALJE1, MICHAEL A. CARPENTER1, THOMAS MALCHEREK2

and TIZIANA BOFFA BALLARAN1

1Department of Earth Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EQ, UK

2Centro di Studio per la Cristallografia e la Cristallochimica, via Ferrata 1,
I-27100 Pavia, Italy

Abstract: The autocorrelation function, , may be used to parameterise effec-

tive line widths of absorption bands in IR spectra. It has the advantage of not requiring any peak fitting to the prima-
ry spectra and can be applied to individual bands or groups of bands in a spectrum. A new procedure for analysing
autocorrelation spectra which result from the application of the autocorrelation function to primary spectra is pre-
sented. The approach is well suited for quantifying line width variations in powder absorption spectra from sequences
of samples with varying composition, degree of cation order or structural state. Worked examples are set out to illus-
trate different applications of the approach, including the characterisation of structural phase transitions in tridymite,
Al/Si ordering under non-equilibrium conditions in Mg-cordierite, short range Al/Ge order in BaAl2Ge2O8 feldspar
and mixing behaviour in the jadeite-augite solid solution.
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Introduction

Hard mode spectroscopy is a powerful tool for
the investigation of phase transitions and chemical
mixing phenomena. Any structural change,
whether physical, chemical, magnetic, electronic,
etc., leads to a change of the phonon spectrum. If
the structural change is continuous, a general state
parameter can be defined which allows these
changes to be quantified. In the cases of structural
phase transitions or cation ordering, this state
parameter becomes the thermodynamic order
parameter, Q. As an example, we may envisage Q
as the amplitude of a transformation pattern ∆ρ.
Let ρi(r) be the density function of the initial state
(e.g., the disordered state) and ρf(r) the density
function of the final state (e.g., the ordered state).
Structural evolution may now be described by a

pattern function φi which characterises the struc-
tural change, where φ ~ (ρf(r) – ρi(r)), and an
amplitude Q as δρ(r) = Q∑κiφi. The essence of
hard mode spectroscopy is that changes of the
phonon spectrum can be treated in perturbation
theory with Q as the state variable. In this approxi-
mation the three essential parameters of a phonon
signal in a Raman or infrared spectrum, namely its
integrated intensity I, frequency ω, and line width
γ, scale in a simple way with the order parameter as

I ~ ω ~γ ~ AQ + BQ2 (1)
or I ~ ω ~ γ ~ AQ2 + BQ4. (2)

The first case (Eq. 1) applies only for symmetry
changes in which the phonon symmetry is com-
patible with the symmetry of the order parameter,
while the second case (Eq. 2) applies for all other
phonon signals (for details see Salje, 1992, 1994,
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or Salje & Bismayer, 1997). The parameters A and
B can be calculated from model assumptions or
from first principles. For many applications, they
have been determined experimentally, and it is
often found that A >> B ≈ 0.

In principle, relatively straightforward param-
eters extracted from a phonon spectrum can give
immediate insights into the thermodynamic
behaviour of materials undergoing phase transi-
tions. For solids with high symmetry and small
unit cells, standard peak fitting procedures are
usually used to determine values of I, ω and γ to
an adequate degree of precision. Variations of Q
with temperature, pressure or composition can
then be followed on a comparable basis. Most sil-
icate minerals, however, give complex spectra
with multiple overlapping peaks. Even in the best
resolved spectra, it may not be possible to decide
on the number of modes contributing to an indi-
vidual group of peaks, let alone produce an objec-
tive procedure for fitting them. The primary
purpose of this paper is to describe a general
method for characterising the band widths in IR
spectra from even the most complex of such mate-
rials. From the outset it is worth emphasising, first,
that the method does not require formal assign-
ment of observed bands to their particular phonon
modes, and, second, that it is most effective when
small incremental changes between spectra col-
lected at different temperatures and pressures, or
with different compositions, are of interest. Other
features of phonon spectra, such as LO-TO split-
ting in spectra from single crystals or weaker
changes of the absorption profiles of powder spec-
tra, are irrelevant in this treatment unless the
dielectric properties of the material under investi-
gation change substantially during a phase transi-
tion. Such effects have been well characterised in
ferroelectric and related materials, and equivalent
methods for their treatment exist. As far as the pre-
sent authors are aware for the cases of minerals, no
such dielectric anomalies are known which might
be detrimental to the perturbation approach used
in hard mode spectroscopy. In this paper, weak
effects from changes in the LO-TO splitting are
not considered, with the understanding that they
can easily be included if each of the dispersion
parameters is scaled in an appropriate way.

The overall approach makes use of the auto-
correlation function and is presented here in four
main sections. In the first section, the general
background of optical phonon spectroscopy is
recalled so as to lead into a mathematical formula-
tion of the proposed methodology. The second
section contains a description of the autocorrela-

tion method. A general recipe for its application,
based on the autocorrelation spectrum, is then set
out in the third section before it is applied to
selected mineral examples in the final section.
General practitioners of spectroscopy may choose
to skip directly to the examples, which are
designed to illustrate the procedure for determin-
ing variations of line widths in powder absorption
spectra from: (a) tridymite, as a demonstration of
the effects of displacive transitions, (b) cordierite,
as an example of the effects of Al/Si ordering in a
more or less continuous sequence of structural
states, (c) BaAlGe2Si2O8 feldspar, as an example
of how local short range order present at equilibri-
um can be characterised, and (d) Na-rich pyrox-
enes from the system jadeite - augite, as an
example of how mixing behaviour as well as
cation ordering may be investigated.

Background

The purpose of this section is to derive the well
known spectral functions for IR spectroscopy, but
putting emphasis on the fact that damping coeffi-
cients have a simple physical meaning and that
their investigation can give insights into the nature
of phase transitions. The outcome of this treatment
is that damping leads to characteristic changes in
profile, e.g. broadening, and that the damping
scales directly with the thermodynamic order
parameter. Damping can be treated by perturbation
theory, with the obvious result that the tempera-
ture/pressure/compositional variation of the damp-
ing coefficient is scaled in a simple fashion with
the order parameter, independently of the vibra-
tional characteristics (e.g. assignment) of a
phonon. The starting point is the standard analysis
of a damped oscillator (e.g. Landau & Lifshitz,
1980); readers familiar with this approach may
wish to proceed directly to the next section.

Before we analyse phonon spectra, let us first
focus on their origin, namely the time-dependent
movement of atomic positions. In the simplest
case of a monatomic structure, the equation of
motion for one particle is written as a damped
oscillator:

(3),

where m is the mass, f is the force constant and γ
is a damping parameter. Qi is the i-th normal coor-
dinate. In the oscillatory regime the time evolution
of Qi becomes, with ω2

o = f/m, and 2γ < ωo:

. (4)Q t A e ei i

t
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The frequency ω is given by

. (5)

More generally, if we consider an atomic position
as pushed by any excitation, we can write the time
evolution of its movement as

, (6)

where K is the force acting on the system. For any
arbitrary force, the time response is simply the
superposition of the exponential relaxations. More
formally, the time evolution is the integral over the
Greens function with the kernel of the acting force
K. The explicit formula is

, (7)

with
. (8)

In the case of an IR absorption experiment, the
exciting force is the incident light wave with 

K = KocosΩt.                     (9)
It is then easy to show that the time evolution of
the atomic coordinate is

. (10)

This equation can be understood as forced oscilla-
tion with the frequency of the incoming light Ω, a
phase angle α and an amplitude Qo as

(11)

with

(12)

and
. (13)

The decay of the free oscillator only appears in the
damping parameter, which modifies the resonance
frequency and the width of the resonance curve. In
order to measure γ directly, it would be more con-
venient to analyse the decay of a phonon signal (as
is usually done in pico-second spectroscopy, for
example). We show later how the damping can be
extracted rather easily from absorption spectra.
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We now analyse the same forced oscillation
via the optical susceptibility and summarise the
salient results for the absorption profiles. Using
the common notation of optical coordinates (m = 1,

f = ω2
i, , where v is volume) we find

the solution of the oscillator equation in the fre-
quency domain directly from Equation 6:

. (14)

With the dipole moment

, (15)

we see that the susceptibility is

(16)

and the dielectric function is

, (17)

which can be split into the real part and the imag-
inary part

ε = ε′ + iε″ (18)

with 

(19)

and
. (20)

Comparing this result with Equation 11 we see that

= .

Conversely, the time correlation of Qi(t) is propor-
tional to the Fourier transform of ε″ : Qi(t)Qi(0) 

. The parameters n and k are 

the refractive index and the extinction coefficient,
respectively. The complex refractive index N =
n + ik is then related to ε via N = and n and k
can be easily calculated via

n = Re( ) (21)

k = Im( ). (22)
The optical absorption α is 

α = 4πωIm . (23)
Using the assumption that phonons are well
described by damped oscillators, the absorption
profile can be calculated directly from

ε
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, (24)

using the expressions for ε′ and ε″ in Equations 19
and 20. This line profile of α is highly asymmetric
unless the oscillator strength is very small.

In contrast to α(ω), the optical conductivity
σ(ω) is more symmetrical with

. (25)

Its shape follows directly from ε″(ω) in Equation
20.

Measured absorption profiles of powder sam-
ples are often even more asymmetric than predict-
ed by Equation 24. No examples are known to the
authors where the full theory has been used for
quantitative analysis of spectra obtained from min-
erals. The additional asymmetries are often related
to the effective medium effect, which has been
explored in great detail in conducting systems
such as high temperature superconductors (e.g.,
Yagil et al., 1995). In most insulating minerals the
oscillator strengths of the phonon modes are small
and the damping γ can be treated as a perturbation
parameter. In this case (and only in this case!) we
approximate

(26)

and = n∞, where n∞ is the refractive index at
high frequencies. In this approximation the
absorption coefficient and the theoretically much
more elementary optical conductivity have the
same line profile, namely that of ε″. This line pro-
file also holds for Raman spectra. The next com-
monly adopted level of simplification is to reduce
the line profile of ε″ for small damping to a
Lorentzian shape:

. (27)

This line profile is probably the most commonly
used in phonon spectroscopy, although, as shown
before, it represents a serious simplification of the
theoretically expected profile.

Before the heterogeneous line broadening in
phase transitions of the order/disorder type or in
chemical mixing is discussed, we summarise the
main result so far: the intrinsic absorption profile
is asymmetric and can only be approximated by a

′′ =

+
−
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2π Im( )i Lorentzian line profile for small oscillator strength
and weak damping. Increasing simplification
appears to bury the physically meaningful damp-
ing parameter ever deeper in an empirical line pro-
file.

Let us now consider a heterogeneous system.
As the characteristic length of hard modes is short
on an atomic scale, the macroscopic line profile is
the convolution of the intrinsic line profile with the
distribution function ρ(ωi) of the phonon frequen-
cy ωi(r):

. (28)

In many cases the distribution function ρ(ω – ω′)
is assumed to be Gaussian. With a Lorenztian pro-
file of α(ω), the resulting macroscopic line profile
is the well known (and commonly used) Voigt
function, i.e., a mixture of Gaussian and
Lorentzian.

The autocorrelation function

It was shown that the phonon spectrum is relat-
ed, in good approximation, to atomic movements
via the Fourier transform of the product of the
amplitude functions:

, (29)

where ε″ (ω) is an even function (ε(ω) = ε(–ω))
defined for ω between –∞ and +∞. This Fourier
transform is identical to the product of the Fourier
transformed amplitudes

(30)

and the imaginary part of the dielectric suscepti-
bility

, (31)

where φ(t) is the autocorrelation function (Press et
al., 1992):

. (32)

This close relationship between the absorption
profile (or, more precisely, ε″ (ω)) and the phonon
amplitude Qi(t) leads to a simple interpretation of
the measured IR spectrum as the Fourier transform
of the time autocorrelation function of the phonon
amplitudes. As such, it still contains information
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on both the homogeneous and heterogeneous line
broadening of a band and on the oscillatory move-
ment of the atoms. If we wish to filter out the lat-
ter component we need to consider the next higher
autocorrelation function. In order to illustrate this
argument, let us envisage a Lorentzian line profile

(33)

with amplitude A, peak frequency ωo and line
width γ. The time correlation function of the
phonon movement is then

. (34)

The autocorrelation of ε″ (ω) is then proportional to

, which no longer contains

the oscillatory part eiω
°
t. The function

(35)

is again a simple Lorentzian line centred at ωo = 0.
The line width is 2γ, i.e., twice the line width of
the peak in the original phonon spectrum. As a
result, we find that the autocorrelation of the line
profile filters out all the unwanted information
about the oscillatory behaviour of the phonons but
retains a considerable amount of information
about the line profile and, in particular, about the
width γ. More complex profiles occur if γ is an
explicit function of t, as, for example, in the case
of time-dependent random forces interacting with
phonons. Such cases are not included in the appli-
cations considered here, although an extension of
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the method to include such effects is straightfor-
ward (e.g. Petzelt & Dvorjak, 1984).

This procedure can now be generalised for
arbitrary line profiles. Any phonon time correla-
tion φ(t) can be derived by Fourier transformation
from  (Q2

i)ω ∝ ε″(ω). It can always be written as an
oscillatory function multiplied by some decay
function. The former is annihilated by the autocor-
relation of ε″(ω) which becomes again the Fourier
transform of the square of the decay function
alone. This means that Corr(ε″) contains informa-
tion about the line profile but no information about
the phonon frequency. Thus, Corr(ε″) can be used
directly for the investigation of the scaling
behaviour of γ as desired in Hard Mode spec-
troscopy and other applications.

Before applications of this analytical method
are discussed in detail, three consequences of the
theoretical treatment may be expanded upon.
(i) We have seen that the autocorrelation of ε″,
Corr(ε″), is directly related to the autocorrelation
of the phonon amplitude. In other words, Corr(ε″)
is a higher order autocorrelation of the basic quan-
tity Qi. We can now consider even higher autocor-
relations, i.e., Corrn(ε″) with n ≥ 2. Such
autocorrelations might have advantages for com-
plex line profiles which are the result of the over-
lap of several phonon signals. While the line
profile of the individual phonons is correctly
reproduced in Corr(ε″) only in the limit ω → 0,
higher order correlations rapidly approach a regu-
lar bell-shaped curve with, in general, a Gaussian
line profile. A simple rule applies for the line
width of each autocorrelation to define the cen-
troid (or “first moment”) of a function f as

, (36)

where (FT(f))′o means the values of the Fourier
transform of f(ω) for t → 0, etc., for the first
derivative. Most autocorrelation functions will
have <x> ≈ 0, even for complex phonon spectra.

The second moment, <x2>, is defined as
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The variance is then a measure of the line width
and is defined as

. (38)

The first term will disappear for autocorrela-
tion functions centred at ω = 0. The line width is
determined, apart from a normalization factor, by
the limit t → 0 of the second derivative of its
Fourier transform. The important lemma is now
that, for a = Corrn (b),

. (39)

Thus the variance of any higher order autocor-
relation is proportional to the variance of the orig-
inal spectrum. This important result means that
variations of σb(Q), as measured by Hard Mode
spectroscopy, are still reflected in the higher order
autocorrelations of the original spectrum.
(ii) Autocorrelations are ideally taken over fre-
quency intervals which contain only one phonon
signal. Under most experimental circumstances,
phonon spectra of minerals contain a multitude of
overlapping peaks. The autocorrelation method
can be applied over larger spectral intervals so
long as the integration extends over a frequency
range which is sufficiently wider than the typical
width of any individual phonon signal. The func-
tion Corr(ε″) (or Corr(α)) then contains finite size
effects in its tails while its centre (ω → 0) still
reflects truthfully the line profiles of the individu-
al peaks. In the context of this analysis of phase
transitions, we envisage the width, γ, of the central
part of the autocorrelation function (or its vari-
ance) to represent some weighted average of the
widths γi of the individual peaks. Additional corre-
lations may be contained in γ, although they tend
to be small in all examples considered so far. As
each γi scales in a simple way with the state
parameter, γ will then reflect the same scaling. By
shifting the frequency interval over which the
autocorrelation is calculated, information about
the scaling of the individual phonons can be
obtained under favourable circumstances. In gen-
eral, the method is used for the determination of
relative changes of the state parameters with, say,
temperature, pressure or time. In these cases, the
scaling is independent of the spectral range and it
is clearly advantageous to choose a frequency
interval which shows the largest variation of γ with
changing state parameters. An obvious exception

σ σa b
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to this rule relates to the variation of the character-
istic length scale with changing frequency inter-
vals (Salje, 1992, 1994; Salje & Bismayer, 1997;
Boffa Ballaran et al., 1998a; Atkinson et al.,
1999).
(iii) It is sometimes convenient to analyse the
spectral derivative α′ of an absorption spectrum in
order to pinpoint the peak frequency, its linewidth,
etc. A similar procedure is also possible for the
autocorrelation function of α. Its first derivative is
then related both to α and α′ via

. (40)

This function can be used to identify the centroid
near ω = 0 and may be useful for filtering high fre-
quency noise in the original spectrum.

The autocorrelation spectrum

The simplest means of demonstrating the pro-
cedure used in practice to extract line width
information from complex spectra by autocorre-
lation analysis is to set out a worked example.
Fig. 1 contains the merged (Far IR and Mid IR)
powder absorption spectra of three different sam-
ples of synthetic Mg-cordierite with different

= ′ + ′ ′
−∞

∞

∫α ω ω α ω ω( ) ( )d

Corr ′ = ′ ⊗ = ⊗ ′( )α α α α α
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Fig. 1. Merged Far IR and Mid IR spectra of synthetic
Mg-cordierite produced by annealing glass of cordierite
composition at 1290°C for 2 minutes (top), 77 minutes
(middle) and 42 days (bottom). Dotted lines indicate the
frequency limits of two segments used for autocorrela-
tion analysis.



states of Al/Si order. The samples were produced
by annealing glass of Mg-cordierite composition
for 2 minutes (top spectrum), 77 minutes (mid-
dle) and 42 days (bottom) in the manner
described by Putnis (1980a). A more complete
sequence of spectra is given below and similar
spectra for the Mid IR range have previously
been described by Güttler et al. (1989). The auto-
correlation analysis of these primary spectra
(absorbance, α, against frequency, ω) proceeds as
follows.
(i) The primary spectra are separated into seg-
ments in such a way that the end points of each
segment are on the baseline. The limits of two suit-
able segments are indicated by dotted lines in Fig.
1, for example, (140 – 208 cm-1, 825 – 1376 cm-1).
Segments with single peaks or with groups of
peaks may be selected, the critical constraint only
being that the limits should be on the baseline.
Some suitable baseline between the end points
should then be subtracted from each segment; a
linear baseline is usually adequate in this context.
(ii) Each segment of the spectrum is correlated
with itself, using the autocorrelation function, to
produce an autocorrelation spectrum. The autocor-
relation function may be written as

, (41)

where α(ω) is the spectrum itself and α(ω + ω′) is
the same spectrum offset in frequency by ω′.
Beyond the limits in ω of the chosen segment of
spectrum, α(ω) = 0.

Autocorrelation spectra derived from the 825 –
1376 cm-1 segments of IR spectra in Fig. 1 are
shown in Fig. 2. The value of Corr for each seg-
ment (Corr1000 in this case, where the subscript is
the value of some wavenumber within the range
used for the autocorrelation to serve as a label for
that segment) is plotted as a function of offset, ω′.
It is immediately clear that the width of the central
peak of the autocorrelation spectra varies with the
widths of the peaks in the primary spectra. A wide
central peak occurs when the primary spectrum
has wide absorption bands, and a narrow central
peak occurs when the primary spectrum has nar-
row absorption bands. Sidepeaks arise in the auto-
correlation spectrum when adjacent peaks in the
primary spectra overlap with increasing ω′.
(iii) Quantitative information on the line widths of
a primary spectrum is contained in the width of the
central peak of the autocorrelation spectrum, in the
limit of ω′ → 0. This can be extracted by extrapo-
lation. A Gaussian curve is fit to the central peak

Corr d( , ) ( ) ( )α ω α ω ω α ω ω′ = + ′
−∞

∞

∫

around ω′ = 0 for successive ranges of ω′ = ±1, ±2,
±3, ... cm-1 (or some other convenient sets of spac-
ings). For this fitting it can be convenient to use a
Gaussian function of the form

. (42)

The coefficient k2 is related to the width, Γ, of the
Gaussian curve by

. (43)

In practice, it may only be variations of the line
width which are of interest, and therefore the value
of k2 can be used directly. The value of k2 from
Gaussian fits over different ranges of ω′ (∆ω′ = 2
for ω′ = –1 to +1, ∆ω′ = 4 for ω′ = –2 to +2, etc.)
are shown in Fig. 3a for the three autocorrelation
spectra in Fig. 2. The value of k2 at ω′ = 0 for the
825 – 1376 cm-1 segment, ∆corr1000, is then
obtained by extrapolation, in the present case
using a parabolic function. For good quality pri-
mary spectra, the value of ∆corr should not be sen-
sitive to ∆ω′, apart from the influence of adjacent
peaks in the primary spectrum starting to overlap
with increasing ∆ω′. For noisy spectra, however,
the variations of k2 at small ∆ω′ can depend on the
noise and not on the true absorption peaks them-
selves. This is illustrated in Fig. 3b for k2 derived
from the 140 – 208 cm-1 segment. The most disor-
dered sample has only weak absorption peaks, and
noise in the absorption signal causes k2 to tail off
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Fig. 2. Autocorrelation spectra from segments of spec-
tra in the range 825 – 1376 cm-1 from Fig. 1. The spec-
trum with the sharpest central peak is from the most
ordered sample (42 day anneal) and the spectrum with
the broadest central peak is from the least ordered (2
minute anneal). Also shown is a typical Gaussian fit to
the central portion of one of the autocorrelation spectra
(dotted line).
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as ω′ → 0. This problem can be circumvented sim-
ply by extrapolation from larger ∆ω′, though it
remains desirable to use values of ∆ω′ which are
as small as possible to avoid the influence of peak
overlaps in the autocorrelation calculation. Values
of ∆corr obtained in this way relate to weighted
averages of the line widths of absorption peaks in
the chosen segment of primary IR spectrum. The
weighting varies with the magnitude of the indi-
vidual absorption peaks.

An illustration of the possible precision of this
method is shown in Fig. 4, using a synthetic spec-
trum. The synthetic spectrum contains five over-
lapping peaks, each with a Lorentzian profile and
the same width, γ. The value of γ has been adjust-
ed successively to produce the series of spectra
shown in Fig. 4a, with some random noise added.
Values of ∆corr obtained by autocorrelation anal-
ysis of the full sequence of synthetic spectra are
plotted against γ in Fig. 4b. As expected, ∆corr is
a linear function of mean line width, <γ>. For a

real system, uncertainties propagated from extrac-
tion of the values of k2 and ∆corr are small.
Expressed as ± 1σ, they are < ~1% for the data
shown in Fig. 3, for example. The most significant
source of errors is in the preparation of original
samples and reproducibility of the primary IR
spectra. These cannot easily be quantified, but
some indication of their true magnitudes is given
by the scatter of extracted values of ∆corr when
plotted against other variables such as composition
or annealing time.

510

Fig. 3. Variation of k2 in the Gaussian function (Eq. 42)
used to fit the central portion of the autocorrelation
spectrum, as a function of the offset range, ∆ω′, for the
fit region. The parameter ∆corr is defined as the value
of k2 at ∆ω′ = 0, and is obtained by extrapolation;
a parabolic function has been used here. For k2 from
Corr1000, the values of ∆corr1000 are relatively insensi-
tive of the range of ∆ω′ used, but the values of k2 at
small ∆ω′ from Corr200 are sensitive to noise in the pri-
mary spectra.

Fig. 4. (a) Synthetic spectra consisting of 5 overlapping
peaks with Lorentzian profiles. In each spectrum, the
peaks have a different mean width. (b) The variation of
∆corr obtained from the synthetic spectra is linear with
the mean line widths of the spectra in (a). The error bars
arise from noise added to the synthetic spectra.



Some care is obviously needed in the interpre-
tation of IR spectra from samples which give line
width variations that arise more by splitting of
absorption bands than by variations of their indi-
vidual widths. This is illustrated using synthetic
spectra in Fig. 5. Two non-equivalent peaks, with
some noise, have been set initially to overlap and
then progressively to diverge in frequency (Fig. 5a).
Autocorrelation analysis of this set of spectra

yields the variations of ∆corr shown in Fig. 5b.
Each peak has a width at half-height of 0.05 on the
scale used, and a realistic measure of this
linewidth is not obtained until their centres are
separated by ~1.5 times their width (Fig. 5b).

Autocorrelation of the autocorrelation spec-
trum may be repeated, as discussed in the previous
section, but practical applications of multiple auto-
correlations have not yet been developed.

Analysis of real systems

In this section, the analysis of IR spectra
obtained from a selection of mineral systems is
presented. The objective is to illustrate both the
methodology and the type of quantitative infor-
mation which can be obtained from real, i.e.,
complex, materials. Of interest are the incremen-
tal changes that develop when a mineral under-
goes a phase transition in response to changing
temperature, pressure or composition. It is obvi-
ously desirable that noise in the spectral varia-
tions due to experimental factors should be
minimised. This is achieved by ensuring that: (a)
sample preparation methods are as nearly repro-
ducible as possible, (b) data collection parame-
ters are kept constant, and (c) the autocorrelation
analysis is repeated over identical ranges, both of
ω in the primary spectra and of ∆ω′ in the auto-
correlation spectra. Experience over a number of
years has shown that powder absorption spectra
from KBr, CsI or polyethylene pellets can be
obtained to the required level of reproducibility.
In practice this means grinding powder speci-
mens for closely monitored times, weighing both
sample and matrix material to a high degree of
precision, using a ratio of sample:matrix that is
first optimised and then repeated, and, finally,
pressing the discs for fixed times under a con-
stant load. In this way internal consistency is
maximised. Of much less concern are the abso-
lute values of frequency or line width in the pri-
mary IR spectra.

Displacive phase transitions in tridymite

In general, displacive phase transitions give
variations in the linewidths of IR spectra which are
considerably smaller than the variations associated
with cation ordering. If the spectra have multiple
overlapping peaks, the chances of extracting quan-
titative data relating to these variations by conven-
tional peak fitting routines will be small. The
sequences of absorption and emission IR spectra
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Fig. 5. Synthetic spectra consisting of two overlapping
peaks with constant line widths of ~ 0.05 units, but with
progressively increasing separation in frequency. (b)
Variation of ∆corr as a function of peak separation
obtained from the spectra in (a); a more or less constant
value of ∆corr is obtained once the peaks have separat-
ed by ~ 1.5 times their widths.
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from meteoritic tridymite shown in Fig. 6a and 7a,
respectively, (data from Cellai et al., 1995) are
typical of just such a displacive system. They are
used here to illustrate the effectiveness of the auto-
correlation method for determining variations in
linewidths.

IR powder absorption spectra of tridymite con-
tain three bands. A set of modes at ~ 350 – 600 cm-1

is generally assigned to O-Si-O bending motions,
a set at ~ 800 cm-1 to Si-O-Si deformation and a
set at ~ 1000 – 1300 cm-1 to Si-O stretching
(Görlich et al., 1983; Dowty, 1987; Hofmeister et
al., 1992). The high temperature hexagonal form
gives at least two peaks in each band and the two
low temperature forms give many more. Natural
and synthetic samples display a variety of phase
transitions in the temperature interval 300 – 800 K
(most recently reviewed by Xiao et al., 1993,
1995; de Dombal & Carpenter, 1993; Withers et
al., 1994; Cellai et al., 1994, 1995; Kitchin et al.,
1996; Graetsch, 1998), and the IR spectra in this

range are expected to be complex. As seen from
Fig. 6a, however, any changes that do occur tend
to be relatively subtle. Additional peaks appear
below ~ 390 K, but changes in the overall width of
the ~ 350 – 600 cm-1 band are barely visible to
inspection.

Values of ∆corr (labelled ∆corr490) obtained by
autocorrelation of the spectra in Fig. 6a, following
the method described above and using the range
247 – 681 cm-1, are shown in Fig. 6b. Two features
of the line width variations represented by ∆corr490
are immediately apparent. First, there is a broad
trend of increasing line width from 23 to ~ 395 K,
followed by a steady decrease from ~ 395 to 700
K. Second, there are some much smaller anoma-
lies between ~ 395 and 700 K. The cusp at ~ 395
K corresponds to the known position of the
orthorhombic ↔ monoclinic transition, which
clearly represents the most substantial change that
occurs in this temperature interval. In the mono-
clinic structure, oxygen atoms are essentially
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Fig. 6. Autocorrelation analysis of absorption spectra from hand ground meteoritic tridymite. (a) Sequence of seg-
ments of spectra collected at temperatures between 23 and 693 K (from Cellai et al., 1995). (b) Variations of ∆corr
for the spectra in (a); dotted lines indicate known transition temperatures for this material. The major effect is clear-
ly the break in slope at ~ 390 K corresponding to the orthorhombic ↔ monoclinic transition. (c) Variation of the
excess line width, δ∆corr, as defined in (b). Two breaks in slope between ~ 340 and 380 K are consistent with there
being additional transitions. The break between 292 and 298 K is an artefact arising from a change in experimental
data collection techniques.



ordered, whereas they have substantial positional
disorder in the orthorhombic and hexagonal struc-
tures (Kihara, 1978; Kihara et al., 1986). The
changes in positional disorder which occur in the
numerous transitions above ~ 395 K produce only
minor changes in ∆corr490 and can thus represent
only minor structural adjustments.

Taking the data between 400 and 600 K to
define a reference state of more or less disorder, an
excess linewidth parameter, δ∆corr490, can be
defined (Fig. 6b). This excess parameter is expect-
ed to scale as Q2 for the orthorhombic ↔ mono-
clinic transition and is plotted against temperature
in Fig. 6c. The overall transition is known to be
split into at least two separate transitions (Cellai et
al., 1994), and all samples of handground
tridymite contain a proportion of the phase MX-1
which transforms to an orthorhombic structure
between ~ 310 and 350 K (Hoffmann et al., 1983;
Xiao et al., 1995; Graetsch, 1998). The non-uni-
form evolution of δ∆corr490 just below ~ 395 K

reflects these complications and can be followed
with a resolution which, from internal consistency,
appears to be better than 1 cm-1. A step between
292 and 298 K coincides with the change in instru-
mental conditions applied during data collection
below and above room temperature. It is an arte-
fact which serves to emphasise the need to main-
tain identical experimental conditions in order to
obtain optimal resolution for line width variations.

Details of the higher temperature phase transi-
tions can be detected in the variation of the auto-
correlation parameter, ∆corr1000, obtained from the
emission spectra shown in Fig. 7a. In this case, the
approximately linear variation of ∆corr1000
between 680 and 745 K (Fig. 7b) has been used to
define a reference state. The excess parameter
δ∆corr1000, with respect to this reference state, is
shown in Fig. 7c. A distinct anomaly at ~ 750 K
coincides with a transition between the P63/mmc
structure and a P6322 structure with (dynamical or
static) disorder, as proposed by de Dombal &
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Fig. 7. Emission spectra from meteoritic tridymite. (a) A representative sequence of segments of spectra collected at
temperatures between 423 and 1113 K (from Cellai et al., 1995). (b) Variation of ∆corr from the emission spectra;
dotted lines indicate known transition temperatures. A straight line through the data between 680 and 745 K has been
used to define a reference state for the excess line width, δ∆corr. (c) Variation of δ∆corr from (b). The anomaly at
~ 750 K corresponds to a P63/mmc ↔ P6322 transition. There is then a continuous change at ~680 K corresponding
to a P6322 (short range order) ↔ P6322 (long range order) transition which is second order in character. Anomalies
at lower temperatures probably correspond to further phase transitions.
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Carpenter (1993). The break in slope between 670
and 680 K coincides with a proposed transition
between short range ordered and long range ordered
states of the P6322 structure (Cellai et al., 1994,
1995), and the linear variation of δ∆corr1000
between ~ 600 and 680 K is consistent with Q2 ∝ T
(second order character). Below ~ 600 K, there
are further changes in slope which may corre-
spond to phase transitions in the orthorhombic
structure, but there are insufficient data to resolve
these clearly. As is found with heat capacity (de
Dombal & Carpenter, 1993), there appears to be
no obvious anomaly associated with the hexago-
nal ↔ orthorhombic transition at ~ 625 K. This
transition evidently involves a very minor pertur-
bation of the local structure, although it represents
a significant break in correlation behaviour over
the longer length scale characteristic of X-ray
diffraction. Above ~ 900 K the data show sub-
stantial scatter (Fig. 7b), presumably from instru-
mental effects, but, even from apparently the most
unpromising of primary spectra, the internal con-
sistency of the data below ~ 900 K suggests that a
resolution of better than 1 cm-1 is obtainable for
the variations in linewidth using autocorrelation
analysis.

Al/Si ordering in cordierite

Two segments of spectra from a more com-
plete series of synthetic magnesian cordierite sam-
ples crystallised at 1290°C are shown in Fig. 8.
The annealing times of between 2 minutes and 42
days generated structural states varying from
hexagonal (Al/Si disordered) through modulated
to orthorhombic (Al/Si ordered), as described in
detail by Putnis (1980a and b) and Putnis & Bish
(1983). Structural evolution in this sequence has
also been reviewed more recently by Daniels et al.
(1994). Güttler et al. (1989) examined Mid IR
spectra from a similar series of samples. They con-
cluded, from the additional peaks that appear in
the spectra when the symmetry is lowered, that the
modulated structure is in fact locally ordered on
the same basis as the orthorhombic structure. By
conventional fitting of a group of peaks in the fre-
quency range 550 – 630 cm-1, they also concluded
that there is a small discontinuity in the degree of
local order when the modulated phase develops at
the expense of the hexagonal phase (see, also,
Redfern et al., 1989). Autocorrelation analysis of
the spectra, without the need to fit individual
peaks, reveals more detailed insights into the
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Fig. 8. Segments of IR spectra from a sequence of synthetic Mg-cordierite samples prepared by annealing glass of
Mg-cordierite composition for different lengths of time at 1290°C. 



structural evolution. The range between 825 and
1376 cm-1 contains many peaks, corresponding,
probably, to stretching and bending modes of the
tetrahedral framework. The second range chosen,
between 140 and 208 cm-1, involves a smaller
number of modes. Motions of Mg are probably
more important in these. The results of autocorre-
lation analysis of these two segments are shown in
Fig. 9.

The variation of ∆corr with annealing time
reflects the variation of the average line widths of
peaks in the two spectral ranges and is expected, as

a first approximation, to scale with q2
od, where qod

is some local order parameter for Al/Si ordering.
As shown in Fig. 9a and b, there is a break in slope
of the time dependence of ∆corr from both spectral
ranges (labelled ∆corr200 and ∆corr1000). This is in
marked contrast with NMR determinations which
show a linear decrease in the number of Al-O-Al
linkages with the logarithm of annealing time
through the complete hexagonal → orthorhombic
sequence (Putnis & Angel, 1985; Putnis et al.,
1987). At short annealing times ∆corr for the low
frequency range shows a smaller variation than
∆corr for the high frequency range, and the differ-
ence is clear in a plot of one against the other (Fig.
9c). The hexagonal → modulated transition occurs
after a shorter annealing time than does the break
in slope shown in Fig. 9.

The implications of these results for the com-
plete picture of Al/Si ordering in cordierite will be
presented elsewhere. For present purposes it is suf-
ficient to make two points. First, if there is a dis-
continuity between the hexagonal and modulated
phase it must be small (see Fig. 9a or b). The
abrupt increase in intensity of the mode near 568
cm-1, which Güttler et al. (1989) used to infer the
existence of a discontinuity, is probably an artefact
arising from the uncertainties inherent in fitting a
small peak on the flank of a much larger one.
Second, ∆corr variations in spectra from modulat-
ed and orthorhombic samples vary linearly with
each other over the two spectral ranges (Fig. 9c).
This is consistent with the expectation that each
will vary linearly with q2

od. The high frequency
range appears to be more sensitive to local struc-
tural changes within the hexagonal and earliest
modulated phases in comparison with the low fre-
quency range. This could arise from the different
correlation length scales for phonons as a function
of frequency. The characteristic length scale of
phonons scales with 1/ω (Salje, 1992), and IR
modes will “see” the ordering transition at differ-
ent stages therefore. In particular, if there is a con-
tinuous increase in the local degree of Al/Si order
with annealing time, this will be reflected in a
more or less continuous change in the widths of
high frequency modes. The low frequency modes
should show marked variations only after the
domains of coherent (locally orthorhombic) Al/Si
order have exceeded some dimension, perhaps on
the order of ~ 10 unit cells.

Al/Ge ordering in BaAl2Ge2O8 feldspar

A rather similar picture to the ordering in
cordierite emerges from autocorrelation analysis
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Fig. 9. (a,b) Variations as a function of the logarithm of
annealing time for ∆corr derived from the spectra in
Fig. 8. Lines and curves are drawn in as guides to the
eye. The hexagonal → modulated transition occurs at
shorter times than the break in slope. (c) Variations of
∆corr from different frequency ranges of the primary IR
spectra: ∆corr200 from spectra in Fig. 8a, ∆corr1000 from
spectra in Fig. 8b.
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of powder absorption IR spectra from BaAl2Ge2
O8, though in this case reflecting changes in the
equilibrium degree of order. There is a phase tran-
sition C2/m ↔ I2/c associated with Al/Ge ordering
which has an equilibrium transition temperature of
~1690 K (Malcherek et al., 1995, 1999). A repre-
sentative set of IR spectra obtained from samples
equilibrated at a range of high temperatures and
then quenched are shown in Fig. 10 (from
Malcherek et al., 1999). Values for ∆corr were
determined for two segments of the primary spectra
in the ranges 354 – 417 cm-1 and 600 – 660 cm-1.
(Note that Malcherek et al. (1999), in their analy-
sis of these spectra, used an earlier and less refined
method for extracting line width information from
the autocorrelation spectrum). Because structural
data in the form of mean tetrahedral site occupan-
cies of X-ray refinements are also available for
these samples, it is possible to test the expected
relationships between the IR linewidths, as
expressed by ∆corr, and the macroscopic order
parameter, Qod. It is expected that ∆corr will vary
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Fig. 10. IR powder
absorption spectra
obtained from sam-
ples of BaAl2Ge2O8
feldspar quenched
from equilibration
temperatures of
between 1173 and
1723 K (data from
Malcherek et al.
1999). Vertical lines
indicate the frequency
limits of segments
analysed using the
autocorrelation func-
tion.

Fig. 11. Variation of ∆corr from two frequency ranges
of the primary spectra in Fig. 10 as functions of Q2

od
from structure refinements (a) and equilibration tem-
perature (b). The difference in behaviour between
∆corr values from the two frequency ranges might
imply local ordering effects on different length scales.
Note that the solid line for Qod (MFA) in (b) is the equi-
librium variation calculated using a mean field approx-
imation.



with q2
od, where qod is the local order parameter;

the average X-ray order parameter, Qod, need not
vary linearly with qod if there is any significant
short range order in a crystal. The results shown in
Fig. 11a can be understood as implying that devia-
tions from qod ∝ Qod occur at small values of Qod,
and that data from the higher frequency range are
more nearly linear than data from the lower fre-
quency range. Again, the scaling of coherence
length with 1/ωsuggests the discrepancies could be
due to short range Al/Ge order on a unit cell length
scale which is different from the macroscopic aver-
age. The extent of this possible short range order is
shown in Fig. 11b; it is closely associated with the
transition point and extends into the equilibrium
stability field of the C2/m structure.

Mixing and ordering in the jadeite-augite solid
solution

Local structural heterogeneities arise in most
materials in association with phase transitions.
Hard mode spectroscopy is well developed in this
context as a method for characterising the nature
and temperature, or time dependence, of such het-
erogeneities. It is also well known that vibrational
spectra can show substantial line broadening as
cations are substituted across a solid solution. The
line broadening is due to the local heterogeneity of
a structure which relaxes differently around
cations with different sizes or charges, but is gen-
erally treated only qualitatively. Selected results
from a study of natural jadeite-omphacite-augite
pyroxenes are treated here to illustrate how the
approach developed to investigate displacive and
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Fig. 12. (a) Representative set of segments of powder
absorption spectra from natural samples of pyroxenes
belonging to the jadeite-augite solid solution. (Data
from Boffa Ballaran et al., 1998a). (b) Autocorrelation
analysis yields a variation of line width, expressed as
∆corr150, which displays an asymmetric positive excess
for the C2/c (disordered, filled symbols) solid solution
and a displacement, δ∆corr150, corresponding to cation
ordering in the P2/n structure (open symbols).
Composition across the solid solution is expressed in
terms of the mole fraction of jadeite + acmite compo-
nents, XJd+Ac. (c) The excess line width parameter,
δ∆corr150, varies linearly with Q2

M1, where QM1 repre-
sents the degree of cation order on M1 sites extracted
from structure refinements (Boffa Ballaran et al., 1998a
and b). Open circles represent different ordered sam-
ples. Filled diamonds indicate different structural states
of a natural sample heat treated for different times at
950°C.
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cation ordering transitions can be adapted to inves-
tigate the mixing behaviour of solid solutions. A
more complete description of this system is given
in Boffa Ballaran et al. (1998a and b), and refer-
ences therein. (Note that Boffa Ballaran et al.
(1998a) also used an earlier, less refined method
for extracting ∆corr values from the autocorrela-
tion spectra).

Complete powder absorption IR spectra from a
set of natural samples are given in Boffa Ballaran
et al. (1998a). The 100 – 200 cm-1 segment is
reproduced in Fig. 12a and was used to determine
∆corr (labelled ∆corr150) values following the
recipe given above. At intermediate compositions
the natural samples have ordered cations and P2/n
symmetry. Heat treatment of these induces cation
disorder and a change to C2/c symmetry, so that
∆corr150 variations with changing composition and
degree of order can be obtained. The variation of
∆corr150 for both ordered and disordered samples
is shown in Fig. 12b. There is a positive and
assymmetric deviation from linearity in ∆corr150
for the disordered (C2/c) solid solution, and its
form is comparable to that of the enthalpy of mix-
ing for this system (Wood et al., 1980). The dif-
ference in ∆corr150 between ordered (P2/n) and
disordered (C2/c) samples, δ∆corr150, which
relates to the difference in line width due to order-
ing, scales linearly with Q2

M1 (Fig. 12c), where
QM1 is the macroscopic order parameter derived
from determinations of the cation populations of
M1 sites.

The existence of line broadening in IR absorp-
tion spectra from samples with intermediate com-
positions across a solid solution implies that the
crystals are locally heterogeneous. If there are
structural heterogeneities, there must be strain gra-
dients and, therefore, contributions to the excess
enthalpy. It seems likely that autocorrelation anal-
ysis from crystals belonging to a solid solution
series will, therefore, give insights into the
enthalpy of mixing. An advantage of the spectro-
scopic approach is the fact that the resulting data
appear to be much more precise, in relation to the
total deviations from linearity, than data obtained
by conventional calorimetry.
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