
Coding Conventions for Igor Pro
Thomas Braun <thomas.braun@byte-physics.de>

21.01.2016
Version: 0.13

1 Procedures
• Allways put code into external procedure files stored directly on disk

• Filenames are built from the characters [A-Za-z_-] and end with .ipf

• The file encoding is OS-dependent but the used charset should always be restricted
to ASCII characters. Code parts exclusively used with Igor Pro 7 should use UTF-8
as text encoding and specify #pragma TextEncoding = "UTF-8".

• The beginning of each procedure file has #pragma rtGlobals=3 with optional
comment.

• Always use UNIX (LF) end-of-line style

2 Whitespace and Comments
Comments

• Use doxygen for documenting files, functions, macros and constants

• Always add a space before a trailing comment as in
if(a < 0)

b = 1

else // positive numbers (including zero)

b = 4711

endif

• Prefer comments on separate lines instead of trailing comments

1

thomas.braun@byte-physics.de

Doxygen
• Use /// to start a doxygen comment and ///< for documentation after the defi-

nition

• Align multiple @param arguments and document them in the same order as in the
function signature:
/// @param pressure Pressure of the cell

/// @param temperature Outdoor temperature

/// @param length Length of a soccer field

Function PerformCalculation(pressure, temperature, length)

variable pressure, temperature, length

// code

End

• Use in/out specifiers for @param if the function uses call-by-value and call-by-
reference parameters.
/// @param[in] name Name of the device

/// @param[out] type Device type

/// @param[out] number Device number

Function ParseString(name, type, number)

string name

variable &type, &number

// code

End

• Optional parameters are documented as
/// @param verbose [optional, default = 0] Verbosely output

/// the steps of the performed calculations

Function DoCalculation([verbose])

variable verbose

// code

End

Whitespace
• Every function should be separated by exactly one newline from other code

• Indentation is done with tabs, a tab consists of four spaces (in case you are coding
not in Igor Pro).

• Comments on separate lines have the same indentation level as the surrounding
code

2

• Separate function parameters from local variables and local variables from the rest
of the function body by a newline
Function CalculatePressure(weight, size)

variable weight, size

variable i, numEntries

// code

End

• Add a space around mathematical/binary/comparison operators and assignments,
and add a space after a comma or semicolon
a = b + c * (d + 1) / 5

if(a < b)

c = a^2 + b^2

end

Make/O/N={1, 2} data

for(i = 0; i < numWaves; i += 1)

a = i^2

endfor

if(myStatus && myClock)

e = f

endif

• Try to avoid trailing whitespace, here space is ␣ and tab is −〉|

Good:

Function␣DoStuff()
−〉|print␣"Hi"

−〉|if(a␣<␣b)
−〉| −〉|c␣=␣a^2␣+␣b^2
−〉|end

−〉|Make/O/N={1,␣2}␣data
End

Bad:
Function␣DoStuff()␣

−〉|print␣"Hi"␣−〉|

3

−〉|
−〉|if(a␣<␣b)␣␣␣␣
−〉| −〉|c␣=␣a^2␣+␣b^2 −〉|
−〉|end␣
−〉|
−〉|Make/O/N={1,␣2}␣data␣

End

• Surround blocks like if/endif, for/endfor, do/while, switch/endswitch,

strswitch/endswitch with a newline if what they express is a logical group of
its own
for(i = 0; i < numEntries; i += 1)

// code

endfor

if(a > b)

c = d

elseif(a == b)

c = e

else

c = 0

endif

switch(mode)

case MODE1:

a = "myString"

break

case MODE2:

a = "someOtherString"

break

default:

Abort "unknown mode"

break

endswitch

According to that reasoning the following snippet has no newline before for and
if

numEntries = ItemsInList(list)

for(i = 0; i < numEntries; i += 1)

// code

endfor

NVAR num = root:fancyNumber

if(num < 5)

4

// code

endif

When mutiple end statements match
for(i = 0; i < numEntries; i += 1)

// code

if(i < 5)

// code

endif

endfor

you should not add a trailing newline.

• There is no whitespace between different flags of an operation and no whitespace
around = if used in a flag assignment.
Good:
Wave/Z/T/SDFR=dfr wv = myWave

Function/S DoStuff()

// code

End

Bad:
Wave /Z /T /SDFR = dfr wv = myWave

• The & in a call-by-reference parameter is attached to the name
Good:
Function DoStuff(length, height, weight)

variable &length, &height, &weight

// code

End

Bad:
Function DoStuff(length, height, weight)

variable& length, & height,& weight

// code

End

3 Code
3.1 General

• Line length should not exceed 80 characters

5

• Use camelCase for variable/string/wave/dfref names and CamelCase for struc-
tures

• Prefer structure-based GUI control procedures over old-style functions

• The variables i, j, k, l are reserved for loop counters, from outer to inner loops

• Use free waves for temporary waves

• Write your code as much as possible without SetDataFolder. Properly document
if your function expects a certain folder to be the current data folder at the time of
the function call. Always restore the previously active current data folder before
returning from the function.

• Although Igor Pro code is case-insensitive use the offical upper/lower case as shown
in the Igor Pro Help files for better readability
Make/N=(10) data

AppendToGraph/W=$graph data

WAVE/Z wv

SVAR sv = abcd

STRUCT Rectangular rect

print ItemsInList(list)

except for the following two cases:
variable storageCount

string name

• Variable and function definitions and references to them must also never vary in
case

• Don’t use variables for storing the result which is then returned.
Good:
if(someCondition)

// code

return 0

else

// code

return 1

endif

// if it is important to know that the returned value

// is a status, name the function something like GetStatusForFoo

// and/or use the @return doxygen comment for explaining its meaning

6

Bad:

variable status

// code

if(someCondition)

// code

status = 0

else

// code

status = 1

endif

return status

• Avoid commented out code

• Don’t initialize variables and strings if not required and always initialize variables
in their own line.
Good:
variable i = 1

variable numEntries, maxLength

string list

Bad:
variable i = 0, numEntries = ItemsInList(list), maxLength

string list = ""

• Don’t use the default value for an optional argument
Good:
StringFromList(0, list)

Bad:
StringFromList(0, list, ";")

• Use parentheses sparingly
Good:
variable a = b * (1 + 2)

if(a < b || a < c)

// code

endif

7

Bad:

variable a = (b * (1 + 2))

if((a < b) || (a < c))

// code

endif

• Use parentheses when combining operators with the same precedence
Good:
if((A || B) && C)

// code

endif

if(A == (B >= C))

// code

endif

Bad:
if(A || B && C) // same as above as these are left to right

// code

endif

if(A == B >= C) // same as above as these are right to left

// code

endif

The reason is that remembering the exact associativity is too error-prone. See also
DisplayHelpTopic "Operators".

3.2 Constants
• Static constants, which are required only in one file, should be defined at the top

of the file

• Global constants are named with all caps and underlines and are collated in a
single file

• Explain magic numbers in a comment
static Constant DEFAULT_WAVE_SIZE = 128 // equals 2^8 which is

// the width of the DAC signal

3.3 Macros
• Use Macros only for window recreation macros

8

• Try to avoid changing window recreation macros by hand. Write instead a function
to reset the panel to the default state and let Igor Pro rewrite the macro by
DoWindow/R.

3.4 Functions
• Try to keep their length below 50 lines (or half the screen height)

• Use CamelCase for function names (optionally prefixed by SomeString_ denoting
the filename)

• Make them static if they are only required inside the same procedure file

• Define all variables at the top of the function body as in
Function CalculatePressure(weight, size)

variable weight, size

variable i, numEntries

// code

End

The reason for this rule is that there is no block-scope in Igor Pro, i. e.
if(someCondition)

variable a = 4711

end

print a

is valid code. And that certainly will confuse people coming from C/C++.

4 Links and Literature
• ASCII: https://en.wikipedia.org/wiki/ASCII

• Doxygen: http://www.stack.nl/~dimitri/doxygen/index.html

• Git settings for Igor Pro code: http://www.igorexchange.com/node/6013

• Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
Prentice Hall (2008)

• How to write good commit messages: http://who-t.blogspot.de/2009/12/

on-commit-messages.html

9

https://en.wikipedia.org/wiki/ASCII
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.igorexchange.com/node/6013
http://who-t.blogspot.de/2009/12/on-commit-messages.html
http://who-t.blogspot.de/2009/12/on-commit-messages.html

	Procedures
	Whitespace and Comments
	Code
	General
	Constants
	Macros
	Functions

	Links and Literature

