Standards for User Defined File Loaders
A Working Proposal

Version 1.06dev)

J. J. Weimer
August 25, 2007

Standardized
File
Data Loader
File A
\ »O

" C
Data File B Sl V" Igor Pro

Interface
—
File C
Distribution Details

Developed with Igor Pro Version: 6.0.2

Procedure Files: udFLStandardFunctions and udFLStaStiacture
Demos: SimpleStandardLoaderPanelDemo (procedure file)
Experiments: none XOPS: none Help Files: none
Requires Packages: none

Abstract

This is a proposal to define standards for how user definecbflgdrs are designed to
interface with other user defined packages in Igor Pro.

The proposed standards based on defining proper namingrd@mn&and on using
a STRUCTURE to carry information (processing parameteesyveen the file loader
and the routines that interact with it.

Conventions and standards are proposed, the file loadetwsieus defined, and a
basic application is presented in this document. A simpleepes also provided with
the package distribution for users to test developmenttahttardized” file loaders.

This document was generated usiAgeX

Contents

1 Summary

2 Background
2.1 LoadingDataUsinglgorProMenus.
2.2 Loading DataUsinglgorProCommands.
2.3 Loading Data Using User Defined File Loaders
2.4 Loading Data Using Standard User Defined File Loaders.

3 Setup
3.1 ReqUIremMents e e e e
3.2 PackageContents.
3.3 Installation

4 A Standardized File Loader

4.1 Format e
4.1.1 Function Call, Name, and Parameters
4.1.2 Structure Name
4.1.3 StructureContents

4.2 GeneralUse

4.3 Programming Applications
4.3.1 Using Templates for Basic Development.
4.3.2 Reading Input ParameterstoFindFiles
4.3.3 Using Input Parameters to Refine Loader Processing.
4.3.4 Using Return Parameters to Assure Standard Behavior

5 Some Standardized File Loader Processing Functions

5.1 Zeroingthe Standard Structure.
5.2 AssuringtheFilePaths
5.3 Moving To and Creating New Data Folders.

5.4 Setting Error Codesand Messages oo e
5.5 Handling Error Codesand Messages e

5.6 Queryingthe ProcessingModes.
5.7 Queryingthe RenamingOptions.
5.8 InitializingalLoader
5.9 Runningaloader
5.10 Listing Available Loaders L
5.11 Renaming INputs. e

6 A Simple Standardized File Loader Panel
7 Acknowledgments
8 Contact

9 Legalize

NNI\)l—\

AW W

35

35

35

1 Summary

File loaders are an integral part of Igor Pro. They provideag to input data from files
into Igor Pro. A wide variety of data file formats exist outsiof Igor Pro. No one file
loader exists in Igor Pro to handle them all. Igor Pro prosidd-ile Loader panel to
input a number of common formats. Loaders for file formatsiolet of the common
ones are generally developed by users of Igor Pro specifieeiorieeds.

Two potential shortfalls exist in the current framework @vdlopment for user-
defined file loaders. First, new users of Igor Pro are not aveayare of the existence
of file loaders other than those built-in to Igor Pro. Secgnellen when the existence of
a specific user-defined file loader is well published and ieswisll-documented, it is at
best “different” in its interaction than any other file loadad at worst “idiosyncratic”
in how it is to be used. These problems can be a frustrationdarusers and seasoned
programmers alike.

This document generates a proposed STANDARD for how useratifile loaders
are to interact with other routines. It also outlines an eplanfile loader and provides a
simple file loader panel to test development of “standard’lbhders.

This document deals only with how files can be loaded in a stahchanner. How
the data are processed once they are loaded is left to theausletermine. In this
regard, standardized file loaders should not presume toyddigplay or analysis of the
data after they are loaded. Their sole task is to bring sope dy file into Igor Pro in a
consistent (standardized) manner.

In other words, when creating a “standardized” file loadegppration of standard-
ized routines for data processing should be left as an eseefor the user :-).

2 Background

Files can be loaded into Igor Pro in on of three ways.

2.1 Loading Data Using Igor Pro Menus

The top level method to load files is using the Load Waves metiwm and associ-
ated sub-menus. These generally provide a dialog box arfacte panel. Options are
available to select the format of the files.

2.2 Loading Data Using Igor Pro Commands

A number of operations are provided in the Igor Pro commanduage to read files.
The most common are outlined below. In writing a user-defiiledoader within Igor
Pro, you will likely use one or more of these commands as gamuwr file loader.

Open

This command can open a file, save a file, or just verify thateaidilavailable to be
opened. A related commandipenNotebook. Any file that is opened should be closed
using theClose command.

FBinRead
This command is used to read data from a file in a byte-wise srat@ommands that
are associated with controlling the reading B®etPos andFStatus.

FReadLine
This command is used to read binary data from a file. Commadradsate associated
with controlling the reading arESetPos andFStatus.

LoadData
This command is used to read data from a different Igor Premx@nt into the current
Igor Pro experiment or from a file-system folder containiggriPro type data.

2.3 Loading Data Using User Defined File Loaders

A wide range of user-designed file loaders have been cregtdelcommunity of users

of Igor Pro. Most are available at no additional cost. Onértis problem is, a central

repository of file loaders for Igor Pro does not (yet) exishagher problem is, because
no standard exists for how a file loader should be designedshadld operate, each
file loader can be expected to be different from all othersm&dile loaders contain

well-designed panels or dialogs to guide the user. Othergeguire some external
programming.

2.4 Loading Data Using Standard User Defined File Loaders

The purpose of this document is to put forward a standardigarafor how user defined
file loaders should work. It advances a sequence of propesarovides a basic
example of how such a standard can be used to create a sitgtiace for a user to
access all “standardized” file loaders.

3 Setup

3.1 Requirements

The procedures with this distribution have only been testedgor Pro 6.0 and are
defined with a minimum requirement of Igor Pro 6.0. Anyone Wihs success in using
the procedures in this distribution under earlier versmiigor Pro, please report such.

3.2 Package Contents

The procedure is provided in a ZIP archive. Unpacking thaiaecwill reveal the pri-
mary (root) folder udStFiLrsStandardsN, where N is theieeraumber. The directory
structure inside this folder is shown below.

“MName -

simpleStandardLoaderPanelDemao.ipf

"X udFLstandardsWorkingProposal. pdf

v I udstandardizedFileLoaders
udFLStandardFunctions.ipf

udFLstandardStructure.ipf

SimpleStandardLoaderPanelDemo.ipf
This procedure file generates a panel that can be used t@tedodment of a file loader
against the proposed standards.

udFLStandardsWorkingProposal.pdf
This document.

udStandardizedFileLoaders

This folder contains procedure files needed to implemergtidoedard for file loader de-
velopment and use. Given that this document is a proposgl thiel naming convention
is only presented to distinguish the two procedures as mdigtackage (or module).
The two required files inside this folder are

udFLStandardFunctions.ipf

This procedure file contains functions that may be used asgba “standard” file
loader. It is basically provided as a benefit for developera avay to help avoid re-
peating the coding of what might be considered to be coretifume for a file loader,
especially in how it interacts with the standard loadercttrre defined in this document.

3

udFLStandardStructure.ipf
This procedure file contains the proposed standard steuctur

3.3 Installation

The directoryudStandardizedFileLoaders MUST Dbe installed in ONLY one way.
Move or copy the entire directory into thiser Procedures directory of your local
installation of Igor Pro. You must do this installation befgyou open any experiment
that is to use the demo of the Simple Standard Loader Panel.

You can rename the directory after it is installed intiser Procedures directory
(although this is not recommended!). You can also instdlir “standardized” file
loaders into this directory as a way of keeping track of théns (s recommended).

TheSimpleStandardLoaderPanelDemo. ipf procedure file can be installed in one
of two ways.

e To have the simple loader panel available every time you kjar Pro, move or
copy the procedure file to tHggor Procedures directory of your local installa-
tion of Igor Pro.

e To have the simple loader panel available only when you wishdlude it, first
move or copy the file to théser Procedures directory of your local installation
of Igor Pro. Then, when you wish to use the panel in a specifieement, open
the Macros window while in Igor Pro and put the line

#include "simplestandardloaderpaneldemo"

somewhere directly after thépragma rtGlobals=1 directive that usually ap-
pears in this window.

4 A Standardized File Loader

4.1 Format

The basic workings of the “standard” structure for progranmgwpurposes is illustrated
by the simple coding for a “standardized” file loader thatiewsn below.

Static Function udFLIinitStructure(udFL)
initialize the structure

Function udStFiLrMYLOADER (udFL)
do whatever is required by MYLOADER to input the file and stioeedata

The devil is in the details, though. To have proper operatibfistandardized”
functions requires that certain conventions be followedmvieveloping them and when
programming to use them.

4.1.1 Function Call, Name, and Parameters

The first conventions provide for consistent access to teéddder function.

Proposal 1

The file loader shall be accessed via a call of the feumction XXX(YYY),
whereXXX is a name that is to be defined (by Proposal 2) @nd are the
parameters to be defined (by Proposal 3).

The second convention provides a consistent way to get the nall standardized
file loaders in use at any time.

Proposal 2
The name of the file loader functictxX shall be prefixed bydStFiLr fol-
lowed by the name of the file loader (with or without capitaldes).

When a user defined file loader conforms to the above converaioall to the Igor
Pro string function FunctionList(*udStFikt,”;”,“"KIND:6") will return a separated list
of all standardized file loader functions currently acdaesin a given experiment. The
prefix “udSFL” that appears on each loader name can be striyipdurther processing
as needed.

Note that, just because afile loader appears in a list of atitediles when searched
using the method shown above does not mean it will work ptgp&he third conven-
tion therefore provides a consistent way to interact withtirees that make function
calls to the loader.

Proposal 3
The function itself shall take one parameter, a pointer ® standard file

loader structure, as

Function udStFiLrMYLOADER(sP)
STRUCT SSS sP

The use o&P to define the abbreviation for (pointer to) the structurepianal.
The namesssS of the STRUCT is to be defined (by Proposal 4)

4.1.2 Structure Name

In order to be able to use the file loader structure for anydielér, it must be accessed
by the same name.

Proposal 4

The namesss of the structure shall beudFLStandardStructure as an no-

tation for User-Defined File Loader Standard Structure. ggasted abbrevi-
ation for the pointegP to the structure iadFL (as used throughout this docu

ment).

Examples
Accepting the above four proposals as conventions, thevinig examples show “stan-

dardized” file loaders:

Function udStFiLrTabDelimitedXY (abCD)
STRUCT udFLStandardStructure &abCD

Function udStFiLrXYZa(udFL)
STRUCT udFLStandardStructure &udFL

By comparison, the following examples show non-standadifie loaders:

Function udStFiLrTabDelimitedXY (abCD,X)
STRUCT udFLStandardStructure &abCD
variable X

Function MyLoader (udFL)
STRUCT udFLStandardStructure &udFL

Static Function udStFiLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

4.1.3 Structure Contents

The remaining conventions deal with the internal operaticanstandardized file loader.
In discussing them below, the assumption is that, as a pmogea, you are already
familiar with how to use STRUCTURES in Igor Pro. The best eglartase is when
you have written control procedures for panel controls aaeehworked through the
examples to understand when structure parameters ardérg’sin a function and when
they disappear. If you are not to this point, then you may mbtbe ready to write a
"standardized” file loader. You may however find encouragan®m the somewhat
tutorial approach the following discussion tries to take.

First, the standard structutelStFiLrStandardStructure is a place to store pa-
rameters needed by the file loader to interact consistentlyitg “surroundings” (the
calling functions). The structure is not a place where datanfthe data files are stored
(they are stored directly into Igor Pro folders for example)

The contents of the structure should be established to geaxonsistent function-
ality and optimal utility. This interest establishes theust of the next proposal and its
sub-proposals.

Proposal 5
The udStFiLrStandardStructure shall contain parameters covering fou
types of information, as presented below.

=

Descriptors
The parameters in this section describe the “charactetieofite loader.

Inputs
The parameters in this section provide a way for the prograntoninput com-
mands to control what the file loader is to do.

Localizers
The parameters in this section define where the file loaderapérate when it
does its job.

Returns
The parameters in this section define the success or faifuteedile loader
when it completes its job.

Each type of information in the standard file structure iséocbvered by defined
parameters, as presented on the next few pages. In thosewhsee the parameter
definition is UNDEFINED, further investigation is neededgiablish a proper standard
or standards for the parameter.

Proposal 5A
The following five parameters shall be specifically contdineithin the
Descriptors section of the file loader:

string mimetype

This string defines thenimetypeof files that can be loaded by the loader. A
example is “TEXT” or “IGOR”.

string extensions

This string (list) defines the file extensions that can be ddaoly the loader.
It is a semi-colon separated list of all file extensions. Aaraple is “.txt;.dat;”.

int32 itemsType

This numeric parameter defines the type of data that aredshyr¢he loader.
It is a bit-wise comparative number following the convenso

B

0: global

1: keyword-list (using "=" and ;")
2. wave

3: matrix

4: image

5: notebook

6: procedure file

others: user defined

When a loader stores more than one type of data simultandbelyesultant
value foritemsType shall be a BIT-wise addition of values. For example,
loader that stores globals and images simultaneously weaud ani temType
of 1 + 16 = 17, while a loader that stored waves and a noteboaokditwave an
itemType of 4 + 32 = 36. When a loader stores more than one type of dx
and the type it stores depends on the processing mode; ¢h&ype should be
set depending on on the processing mode and user contrasasssked later
in this document.

a

ata,

Proposal 5A (continued)
int32 itemsDim[4]

This numeric parameters defines the “dimensionality” of ldealed data. It
IS a positive or negative integer number in an array storagedepends on
itemsType following the conventions:

itemsType = 1 (global)
itemsDim[0] = 1: variable
itemsDim[0] = 2: string

itemsType = 2 (keyword-list)
itemsDim[0] = 1: list uses "="
itemsDim[0] = 2: list uses ":"

itemsType = 4 (wave)
itemsDim[0] = -1: unscaled numeric wave
itemsDim[0] = 1: scaled numeric wave
itemsDim[0] = -2: unscaled text wave
itemsDim[0] = 2: scaled text wave

itemsType = 8 (matrix)
usingN to indicate the matrix dimension
N = 0: rows;N = 1: columnsN = 2: layers;N = 3: chunks
itemsDim[N] = -1: unscaled numeric
itemsDim[N] = 1: scaled numeric
itemsDim[N] = -2: unscaled text
itemsDim[N] = 2: scaled text

itemsType = 16 (image) — TO BE DEFINED!
itemsType = 32 (notebook)
itemsDim[0] = -1: unformatted

itemsDim[0] = 1: formatted

itemsType = 64 (procedure) — TO BE DEFINED!

10

Proposal 5A (continued)
string procModes

This string list defines the options available to a user tdrobthe file loader.
The first mode shall be “Auto”. All other modes are establiklhy the
programmer. An example fgrrocModes for a file loader with four loading
modes is “Auto;Via Dialog Box;Without Preprocess;Mantial;

int32 setNames

This variable is both a Descriptor and an Input. As a Desarjpt defines
whether the loader can rename the parameters that it retaitig)s variables,
waves, or matrices). As an input, it directs the loader tanmesthe parameters
in a certain way. This variable is a BIT-wise value that usesdonventions
below.

BIT

0: loader sets the input names (the user has no control)

. user can (re)name input according to file names (+ number)
: loader can (re)name input according to a defined file header
. user can (re)Name input according to a prefix (+ number)

: user can manually (re)name each input (via a dialog)

A OWN PR

When a given (re)naming option is supported in any mode tleby
udFL.userCtrl, that mode should typically be supported in all modes (wi
perhaps the exception of thauto" mode). All loaders should support renam
ing with BIT = O (ie,udFL.setNames = 1). This is essentially a mode whers
the loader pre-defines the input names. When two or more riegaoptions

are supported, the return value should be the BIT-wise sutimeomodes. For
example, a loader that supports file name and manual renamiiingturn a

value of (1 + 2 + 16) = 19 foudFL. setNames.

D

11

Proposal 5B
The following parameters shall be specifically containethini the Inputs
section of the file loader:

int32 eventCode

This numeric parameter defines the “action” that is evokirgyfile loader. A
value ofeventCode = -1 shall mean, a request has been made to kill the
loader package (remove it from the current Igor Pro expartineAll other

eventCodes are for the programmer to define.

int32 userCtrl

This numeric parameter is the process control variabletferfite loader. All
positive values ofiserCtrl map directly onto the index value of the mode i
the procModes list, starting from a count of 1. Two speciaterCtrl values
shall also apply.

Value
-1: initialize the loader
0: query the loader for its Descriptors

A file loader with procModes = “Auto;Via Dialog Box;Without Prepro-
cess;Manual;" would use mode “Without Preprocess” wingsrCtrl = 3.

string userData

This string parameter is an option to further refine a prangssode in the file
loader.

file

12

Proposal 5B (continued)
int32 reportCtrl

This numeric parameter provides a way to define how the |loagents on its
activities. Three specific modes shall be reserved.

Value

-1: silent
0: normal
1: verbose

The programmer is free to define the level of reporting preglithy the file
loader in each case.

string pluglns

This string list is an option to allow a programmer to enhaocsupplement
the loader through “plug-in” functions. A plug-in functios one that accepts
the udStFiLrStandardStructure and uses its parameters to speed up
enhance manipulations within the loader. A prime exampléisnake a

file loader use a certain XOP routine that does somethingdtiegrwise is

hard-coded into the loader. Providing a loader that is awérhe XOP is

equivalent to making it “aware” of the XOP by adding the fuactname to a
listin plugIns.

int32 setNames
This parameter is both a Descriptor and an Input. As an iripdirects the
loader to (re)name the input according to the conventiomsrgpreviously in
the Descriptors section.

string namePrefix

This string is used to define the prefix for (re)naming inpuluga when
udFL.setNames = 8.

13

or

Proposal 5C
The following four parameters shall be specifically congairwithin the
Localizers section of the file loader:

string pathStr

This establishes the path to the directory containing tleésiilto be loaded.

The string uses the Igor Pro convention of path names bepparaed by "
(colons).

string filelist

This establishes the list of files to be loaded. The list camtaia the full
path to the file(s), a partial path to each file(s), or the fileneg) without
extension(s), as discussed later in this document.

int32 returnCtrl

This numeric value controls additional aspects of how tteléw reports its
progress. In particular, this value controls whether Igar global parameters
such as S_value and V_flag, that are normally created dugiagRroOpen
processes, are also to be created by the file loader. Twdispedues shall be
reserved.

Value
0: normal (all return information is in the file loader struict)
1. enhanced (also create additional “global” parameters)

string toFolder

This string defines the Igor Pro folder where the data are twtdred. It shall
always be defined relative to theot level.

14

Proposal 5D
The following four parameters shall be specifically corgdinwithin the
Returns section of the file loader:

int32 itemsCount
This numeric value provides the total number of items loaded
string itemsList

This string list provides the names of the items (globalsjesa . .) that have
been loaded.

int32 errCode

This numeric value defines whether any error occurred duhegxecution of
the file loader. Two return values shall be reserved.

Value
0: any error is only a warning
-1: any error is considered fatal (and should likely leadrt@bort)

string errMsg

This string (list) returns any error messages generatetefile loader during

processing. It shall accumulate warnings sequentiallyerdtore, warnings
can be dumped to a report. By comparison, any fatal error agessshall

overwrite any prior contents, with the understanding thaytare designed to
be handled by an immediabeAlert followed by anAbort.

In addition to the above parameters within the structure file loader itself
shall return a 0 when it has executed properly and a -1 whee sorar (warn-
ing or fatal) has occurred.

15

4.2 General Use

As a general user of Igor Pro, you will typically have no direderaction with the
Structure procedure file that is part of this package distitim. Your only need is to
maintain an updated copy of the file (and its companion Fanstfile) in your Igor Pro
distribution. All procedures that conform to the standgsdsposed in this document
will then be accessible to you, ideally through “plug-andd” interfaces, such as the
one provided by the Simple File Loader Panel Demo.

4.3 Programming Applications
4.3.1 Using Templates for Basic Development

A basic application of the file loader standard structurbustrated in the two templates
below. These templates are written in Igor Pro, they are mibtam as C/C++ for XOPs.

Having someone provide such templates based would be wett@as an addition to
this document.

Initialization
The first function is the initialization routine for the load

Static Function udFLInitStructure(udFL)
STRUCT udFLStandardStructure &udFL

udFLZeroStructure(udFL) // zero the structure

udFL.mimetype = "..." // set the mimetype
udFL.extensions = "..." // set the extensions
udFL.itemsType = ... // set the itemType
udFL.itemsDim[0] = ... // set the itemsDim
udFL.proModes = "Auto;..." // set the procModes
if (udFL.userCtrl == -1)

print udFL // show descriptors in history
endif
return O

end

The function call taudFLZeroStructure (udFL) assures that all parameters in the
file loader standard structure are properly defined (as equdater in this document).

16

The remaining lines define the character of your file loadais ihformation is passed
back to the primary calling routine via your loader function

Note that your initialization routine is defined as a STATh(¢tion so that it is
local to your procedure and only accessed by going throughfjle loader function.

File Loader
The second function is the entry point to your loader functié basic template for a
“standardized” file loader is shown below.

Function udStFiLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

if (udFL.eventCode==-1)
. procedure file is being killed
. do whatever is needed to clean up
return O
endif

switch(udFL.userCtrl)
case -1:
case 0O:
udFLInitStructure (udFL)
break
case 1:
. auto-load mode
. assume all parameters are defined in structure
. do auto-processing
break
case N:
. mode N
. do whatever processing
break

endswitch

return O
end

17

Each part of the template is presented in turn below.

Clean-up

The first portion of the above template provides a standagdtavenake your file loader
aware of an event that is going to kill the procedure windomtaiming your file loader.

You can thereby write specific “clean-up” procedures withif ... endif portion

of the loader. Theeturn 0 command assures that no further processing is done by the
loader after all the clean-up steps have completed.

In providing a standarddFL. eventCode = -1 as a method to notify the file loader,
the assumption is, any routine that attempts to kill your Ifleder procedure should
passudFL.eventCode = -1 to it first. This may not always occur. One way to assure
this may be through the use of Hook functions within your pahae itself. Further
clarification of this process remains to be established.

Initialize

The initialization of the file loader occurs WdFL.userCtrl = -1 or O when the file

loader is invoked. In the first case, the initialization iddldawed by a report of the

Descriptors of the file loader. In the example initializatimutine, this is done by
printing the entire structure to the history window. Furtpessible refinements to this
are discussed later in this document. WhefL .userCtrl = 0, the file loader only

initializes itself, nominally to its base set of Descrifgor

Auto-Process

The auto-process mode of the file loader occurglifL . userCtrl = 1 when the file
loader is invoked. A primary assumption is, all parameterthé Inputs and Localizers
sections ofudFL are pre-defined (by the user in some way) when auto-proceds g0
invoked. Your file loader should therefore not need to uskdiboxes or prompts for
user input in the auto-load mode! It may (and indeed shoekt)that all parameters are
indeed properly set and return an approprigteL . errCode andudF1.errMsg if they
are not (as discussed later in this document).

Other Process Modes

Other processing modes are establishedd®BL . userCtrl values greater than 1. The
value ofudFL.userCtrl is to map exactly with the index value of the “mode” string

in udFL.procModes. As an example, the table below shows how processing modes
and user control values map for a file loader with three logdiodes. The first menu
selectable mode is “Auto” by definition. The second modeg®“Belect”, is run when
udFL.userCtrl = 2. The third mode, “Manual”, is run wharFL.userCtrl = 3.

18

User Control Mode Notes

-1 Initialize and Query typically not shown in a menu selewcti
0 Initialize (only) typically not shown in a menu selection
1 Auto first menu selection for all file loaders

2 Pre-Select a specific mode for this file loader

3 Manual a specific mode for this file loader

For the above table, to create the proper sequence fornghadfL . procModes and
udFL.userCtrl, the value ofudFL.procModes would be initialized as “Auto;Pre-
Select;Manual;” (a string list).

4.3.2 Reading Input Parameters to Find Files

The use of input parametetsiFL . eventCode andudFL.userCtrl have been illus-
trated in the example above. Two remaining parameters aengal to the “Auto”
mode of processing. They atdFL.pathStr andudFL.fileList in the Localizers
section of the file loader standard structure. These twonpeters define where the
files are located (and are therefore considered as locsliakhough they also are re-
quired input parameters in “Auto” mode).

Your file loader can use the two parameters in any way you wanine general
ways are proposed below for further consideration.

Loading a Single File

When the “Auto” mode of loading is designed to load only a Enijje, a recom-
mended convention is thaidFL.pathStr will contain the full path to the file and
udFL.fileList will contain the filename (with extension). In this case, dile
loader could create a temporary data Path, load the file, lzen delete the tempo-
rary data path. An example code to do this is shown below. ilnabde, the function
udFLAssureFilePaths (udFL) is a function provided in the standard set, as discussed
later in this document.

19

case 1:
variable ic, nc = udFLAssureFilePaths(udFL), refNum
string fname
switch(nc)
case -1:
. handle as error
break
case 1:
fname = StringFromList(0,udFL.fileList)
NewPath/0/Q tmpFPath $udFL.pathStr
Open/R/Z=1/P=tmpFPath refNum as fname
if (V_flag!=0)
Close refNum
KillPath/Z tmpPath
. process the error that occurred
endif
Close refNum
. process the data
KillPath/Z tmpPath
break
default: // multiple files (see below)

endswitch
break

Loading Multiple Files

The “Auto” mode of loading is actually best designed wherait tbad many files of the
same format, potentially from multiple directories. Whdrfikes are in the same direc-
tory, udFL.pathStr should contain the path andiFL.fileList just the file names.
When the files are in multiple directoriesiFL.pathStr is to be an empty string (*”)
andudFL.fileList is to contain the list of files with their full path names, inding
extensions. This convention is assured by the funattifLAssureFilePaths (udFL)
(as discussed later in this document). An example code tdl@ame of the cases is
shown below.

20

case 1:

switch(nc)
. handle error and single file cases
default:
if (strlen(udFL.pathStr)!=0)
. all files are in the same directory
. loop on fname while in same path
else
do
fname = StringFromList(ic,udFL.fileList)
if (strlen(fname) == 0)
break
endif
Open/R/Z=1 refNum as fname
if (V_flag!=0)
Close refNum
. process the error that occurred
endif
. process the data
while(1)
endif
break
endswitch
break

Handling Empty File Lists

You may wish to allow a user the option to select file(s) fodiog by coding file se-
lection routineswithin your loader Of course, this MUST not happen in the “Auto”

processing portion of your loader. You may decide that, aptgndFL.fileList isto
be taken as a directive by the user to open a file selectiooglidlgain, this MAY NOT
happen whemdFL.userCtrl = 1. In this case, an empty value ofFL.fileList

is to be handled as an error from the user input (this will bsused by a call to

udFLAssureFilePaths (udFL).
In those cases where you do allow the user to select files loyfispselection dialogs
or prompts within your file loader, a good practice is to pat tire selections properly

21

into udFL.pathStr andudFL.filelList following the conventions proposed above
for loading a single file or loading multiple files. When yoaatier also processes the
incoming data, this can in fact make your code easier to eees the example below
illustrates.

switch(udFL.userCtrl)
case 1:
break
case 2:
. allow user to select files list
. store file names in udFL.filelList
break
endswitch
. load file(s) in udFL.filelList

4.3.3 Using Input Parameters to Refine Loader Processing

The parameters in the Inputs sectionudfL are to by defined by routines outside of
your file loader (how this can be done in a “standard” way ig pathe discussion in
the section on the standardized file loader panel later ;mdbcument). You should
NOT change them inside your file loader. You should use thetawaisches” to define
what your file loader does.

The use ofudFL.eventCode andudFL.userCtrl have been illustrated in the pre-
ceding section. The examples below show how other inputnpetiers can be used to
further refine what your file loader does.

Defining Sub-modes

The stringudFL.userData provides one way of having sub-modes of processing for
any “main” processing mode. This is best illustrated by aypmonming example. In the
section on the next page, only that part of the file loaderhbatdles a mode when the
valueudFL.userCtrl = 2 is shown.

22

case 2: /[myloader does "pre-processing” in this mode
if (strlen(udFL.userData)==0)
. no special sub-mode pre-processing is requested
. do all pre-processing
break
endif
strswitch(udFL.userData)
case '"preformat":
. only preformat mode is requested
break
case "overlay":
. only overlay mode is requested
break
default:
. the sub-mode string is not recognized
. handle this as an error
return -1
endswitch
break

The sub-mode strings required from the user for your file éoadn be as simple
or as complex as you want. Verbose types of strings, as indéi@gle above, are one
example. Requiring strings that are more UNIX-like, for exde “-p” for “preformat”
and “-o0” for overlay, is another example. You may even regmumerical values (as
strings) usingidFL . userData and use spaces as separators to enable “multiple” or “se-
guential” sub-mode processing. Perhaps the only rule al®ing theudFL .userData
string parameter is, the string requiredii¥L . userData at any pointin your file loader
should not be required to contain special characters sueloas.

Note also, you should be certain to handle cases when thé wdpl . userData
does not equal any of your desired selections. The exampleahows, this is handled
by thedefault: case of the string switch selection and is processed as anjser
error.

Finally, the primary assumption wheidFL.userCtrl = 1 is, your file loader will
operate in “Auto” process mode. In particular, this meawsspecial sub-modes are to
be selectable. Therefore, whedFL.userCtrl = 1, any string value that is contained
in udFL.userData should be ignored within that portion of your file loader!

23

Localizing Processing

The objective of many file loaders is to store data in Igor Rréhsit it can be further

processed. This is certainly true for global, keyword-ligdve, matrix, and image data.
In such cases, the strong recommendation within the Ilgoc&ramunity is to establish

and use Igor Pro data folders as a place to store the data.

The discussion in this portion of the document assumes thatas a programming,
are familar with creating, setting, and changing data fdloeations by appropriate Igor
Pro coding within your file loader.

The file loader structure offers the parameié¥L . toFolder that is set by the user
as a way to direct any file loader to a specific location wheMUIST store the data.
This directive is an IMPERATIVE, not an optional directiv@. other words, when the
parametendFL.toFolder is not empty, your file loader is being commanded to change
to the folder specified by the string and to load data only ih&t specific folder.

The value inudFL. toFolder is always a full folder path relative to the root folder.
An empty value means, data are to be stored at the root faddel. |

A standard functiorudFLSetDataFolder (udFL, [setit]) has been provided to
allow your loader to create and change to a specific foldezdas the value pased in
udFL.toFolder. Its use is illustrated in the example on the next page.

Your file loader MUST also return to the original data foldefdre the loader ex-
its its processing. In general, a recommended way to askateyou always return
to the original data folder is to include proper coding fartDataFolder (1) and
SetDataFolder, as is also shown in the example on the next page.

24

Function udStFiLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

string cdf = GetDataFolder(1)

if (udFL.eventCode==-1)
SetDataFolder $cdf //reset justin case the data folder was changed
return O

endif

udFLSetDataFolder (udFL)

switch(udFL.userCtrl)

SetDataFolder $cdf
return -1
endswitch

SetDataFolder $cdf
return O
end

Within the confines of the above directives faFL . toFolder, your file loader is
otherwise free to create sub-folders in any of its loadingdes”, including the “Auto”
mode. At the end, your file loader will inform the user of anidfrs created by return-
ing proper values in thedFL.itemsList parameter, as discussed later in this docu-
ment.

Reporting Progress

The file loader standard structure provides one parametifioe the extent of report-
ing requested by the user during processing. The paraméfer. reportCtrl can
be used to define three (or more) “modes” of reporting infdioma In Silent mode,
the processing proceeds with no reports. In Normal moddotuer reports on certain
stages of processing. Finally, in Verbose mode, the loagfaorts frequently through-
out. The level of reporting in each mode is left entirely te frogrammer. An example

25

of how this can be used to document the progress dfjpke command is shown in the
code below.

switch(udFL.reportCtrl)
case -1:
Open/R/Z=1/Q ...
break
case O:
Open/R/Z=1 ...
break
case 1:
Open/R/Z=1 ...
print "Just opened the file for reading ..."
break
endswitch

Accessing Plug-Ins

Plug-ins should be understood to be routines that might bgeoéral use to a wide
range of file loaders or segments of code that are written iroeeroompact manner
(ie, as an XOP). To be accessible as a plug-in, the plug-iatiom will be required to
conform to conventions in its name (UdFLPlugInXXX(YYY))@parameters (YYY is
the file loader standard structure).

After the file loader standard structure is zeroed usi®j.ZeroStructure (udFL),
the parametetdFL . plugIns will contain a string list of all currently accessible plug-
ins. This list can be checked for a particular plug-in anddlig-in used when available.
The example code below shows how this could be designed.

if (strlen(ListMatch(udFL.plugIns, "udFLPlugInInvertData")==0)
. process by Igor Pro code
else
udFLPlugInInvertData(udFL)
endif

26

4.3.4 Using Return Parameters to Assure Standard Behavior

Defining Character

The “character” of the file loader is an indication of whatdileis designed to handle
and how (in general) the results will appear after it is cagtgal The parameters in the
Descriptors section of the file loader standard structufmelehis. Whenever an ex-
ternal routine queries your file loader, it should returnpamovalues of the descriptor
parameters. The initialization template shown previouslhis document is one gen-
eral way this can be done. Further comments about each pesgarameter are given
below.

No convention applies when the file loader can handle mone dim& mime type.
One proper method of return is to set the mime type to the nayatwon value. Alter-
natively, the mimetype can be set to an empty value. Finddeymime type can be set
dependent on other user inputs, suclu@EL . userCtrl or udFL.userData, if this is
appropriate to how the loader behaves. In no event (as ofé¢ngson) should the mime
type be set to more than one value. This option is reservetiifare versions of the
structure.

When more than one file extension can be loaded, the convelstito create a
string list of all possible extensions. The understandsnghie search for file extensions
takes precedence over the search for mimetype when segfohifiles to load, and, as
needed, all files containing all possible file extension$ mel collected and displayed
for selection by a “standardized” input routine.

When the file loader can return more thad¥L. itemsType value, and absent any
other qualifiers, it should return the BIT-wise addition bfessible values. The exam-
ple in Proposal 5A illustrates this convention. For such ftirvtype” file loaders, when
the value ofudFL.itemsType depends specifically oadFL.userCtrl, the value of
udFL. itemsType must be returned appropriate to the valua@fL.itemsType. The
example code on the next page shows such behavior in aneutlin

27

. within initialization function
udFL.itemsType = 17 // loader returns globals and images

. within the actual loader function
switch(udFL.userCtrl)
case 1:
. load both globals and images
udFL.itemsType=17
break
case 2:
. load only images
udFL.itemsType=16
break
endswitch

When only one data type is stored by the file loader, the cdio@nfor return-
ing proper values dFL . itemsType also apply for the value afdFL.itemsDim[N].
When more than one type is stored by the file loader, no commreekists for setting
the value ofudFL. itemsDim[N]. An appropriate return value may be a value of ZERO
(0), to indicate a state that requires further study by thee.us

With the exception of the convention that “Auto” be the firatue, the proper string
names to return idFL.procModes are left entirely to the programmer. The only
suggestion is, the names should be short (to fit in a popup tisthand descriptive (to
inform the user of their function). By the way, the languagedifor the string is also
entirely up to the programmer. One method of preparing lagguocalizations for this
menu is to us&trConstant values in a localization file. The example below shows a
section to define the values for English or German, with threetii localization being
for German.

28

. in the loader preamble
#define DEUTSCH // this is a German localization

#ifdefine ENGLISH
StrConstant udFLprocModes = "Auto;Select the Files;Test;"
#tendif

#ifdefine DEUTSCH
StrConstant udFLprocModes = "Auto;Files Auswahlen;Prufen;"
#endif

. in the initialization routine
udFL.procModes = udFLprocModes

Pre-processing Data

A “standardized” file loader ONLY loads the file as data. It i©Nto be designed to
display or analyze the data after it is loaded. This extentis & gray area however,
because some file loaders may also provide “pre-proceggdgpes of routines.

A valid pre-processing routine is understood to be a routiva transforms one
of the data types into a different data type. A function tla&es a (previously loaded)
notebook and translates it into a keyword-list of valuesvalal pre-processing routine.
A function that transforms a matrix to an image is also vaAdunction that displays
an image for the user is not a valid part of a file loader.

Whenever a pre-processing (or transformation) routinpjdied to data by the file
loader, the value otdFL.itemsType must reflect the value of the data AFTER the
transformation has been applied. This also applies to thed udFL. itemsDim [N].

Returning Item Details
The two parametersdFL. itemsCount andudFL. itemsList, provide additional doc-
umentation of what the file loader has stored.

The value ofudFL.itemsCount is the total count of all items stored by the file
loader. The value ofdFL. itemsList is a string list of the items loaded using full path
name designations starting from theot : data folder.

In one senseydFL. itemsCount is redundant information because it can be directly
obtained by counting the items iRFL.itemsList. In another, it provides a direct
value for a user to quickly confirm everything has been logaegerly, for example
when the items are the same type but may be loaded acroszdifseib-folders.

29

Handling Errors

The values olidFL. errCode andudFL.errMsg should be used to inform the user of
problems during the loading. A standard function has beeviged to “set” the values,
as the example below shows.

case 1:
if (udFLAssurePaths (udFL)<0)
udFLSetError (udFL,"File names are not proper",-1)
SetDataFolder $cdf
return -1
endif
. continue processing in Auto mode

Errors that cause aborts should cause a return from therledadea value of -1.
Otherwise, successful loading should return a value of 0.

5 Some Standardized File Loader Processing Functions

A collection of functions is provided as part of a standardikage. They have been
referenced in the examples above. Their specific use isideddn more detail below.

5.1 Zeroing the Standard Structure

The command below will fill the file loader standard structwiéh default (blank or
otherwise) values, as shown. In particular, the valuedst. . plugIns will contain the
list of available plug-in modules that follow the proper nagiconvention. This does
not test the validity of the plug-in!

30

Function udFLZeroStructure (udFL)
STRUCT udStFilrStandardStructure &udFL

udFL.mimetype = ""
udFL.extensions = ""

udFL.itemsType = 0

udFL.itemsDim[0] = 0
udFL.itemsDim[1] = 0
udFL.itemsDim[2] = 0
udFL.itemsDim[3] = 0

udFL.procModes = "Auto;"

udFL.setNames = 0

udFL.eventCode = 0

udFL.userCtrl = 0

udFL.userData = ""

udFL.reportCtrl = 0

udFL.plugIns = FunctionList ("udFLPlugIn*",";" 6 "KIND:6")

udFL.namePrefix = "" udFL.pathStr = ""

udFL.filelList = ""

udFL.returnCtrl = 0

udFL.toFolder = "root:"

udFL.itemsCount = 0

udFL.itemsList = ""

udFL.errCode = 0

udFL.errMsg = ""
end

5.2 Assuring the File Paths

Function udFLAssureFilePaths(udFL)

The command above will assure thaiFL.pathStr andudFL.fileList have
proper values. It returns a -1 when they are incorrectly tded. Otherwise, it re-
turns the number of files to be loaded. It returns a blank@inmudFL . pathStr when

31

multiple files are to be loaded from multiple directories.

5.3 Moving To and Creating New Data Folders

Function udFLSetDataFolder (udFL, [setit])

The command above will move to a specific folder defined inudfeL. . toFolder
directive. If the folder does not exist, the function creaite The optional variable
parametegsetit will determine whether to stay in the specified folder or retto the
folder of origin. Whensetit = 0, the function returns to the folder of origin. This is
equivalent to creating a new data folder but not moving ihtdNhensetit = 1, the
function also moves to the new or existing folder. The defesudetit = 1, so a call to
udFLSetDataFolder (udFL) will create (as needed) the new data folder and move to it
directly while a call toudFLSetDataFolder (udFL,0) will create (as needed) the new
data folder but will not change folder locations.

5.4 Setting Error Codes and Messages

Function udFLSetError (udFL,errStr,errCode)

This command will set thedFL.errMsg and udFL.errCode parameters to the
string errStr and the numeric parametetrCode, respectively. It always returns
ZERO.

5.5 Handling Error Codes and Messages

Function udFLHandleError (udFL,errStr,errCode)

WhenudFL. errCode = -1, this command will put up BoAlert 0 dialog box with
the contents ofidFL.errMsg and will then Abort the routine. WhetdFL.errCode
= 0, this command will print a WARNING with the contents @dFL.errMsg in the
history window.

32

5.6 Querying the Processing Modes

Function/S udFLQueryprocModes (fp)

The command above will return a string list of the availalbiegessing modes for
the loader function nametp (a string input).

5.7 Querying the Renaming Options

Function/S udFLQuerysetNames (fp)

The command above will return a string list of renaming amicn a manner that
can be used in a popup menu. Those modes that are unavaildlile disabled.
The string with all options enabled will reatiAuto;Filename;File Header Info;Prefix+Number;Manud

5.8 Initializing a Loader

Function/S udFLInitializeLoader (udFL,fp)

The command above will inialize the file loader nanfeda string input) using the
standard structuredFL.

5.9 Running a Loader

Function/S udFLRunLoader (udFL,fp)

The command above will run the file loader namfgd(a string input) using the
standard structuredFL.

33

5.10 Listing Available Loaders

Function/S udFLLoaderList (how)

The command above will return a string list of the availabdedardized file loaders.
The parametetiow determines the format of the string list. Whiesw = 1, the function
names include the standard prefdStFiLr. Whenhow = 0, the loader function names
have the prefixes removed. The former case is useful for ngrthie function, and the
latter for showing the function in a popup menu.

5.11 Renaming Inputs

Function/S udFLRenameInput(cList,prefix)

The command above will rename all items in the stringdistst using the string
in prefix and a numeric value. This function tries intelligently tacgbdner the next
name in the sequence. It also prefixes strings Witland variables witlv_ (to avoid
conflicts). This function uses an additional data foldeecliory function that is kept
static to the procedures (and is therefore inaccessiblatside calls).

6 A Simple Standardized File Loader Panel

The Igor Pro procedure file to handle “standardized” file kyads provided as a benefit
to users and programmers alike. It is a very basic design lamad be simple enough
to understand that no detailed explanation is provided. here

Install the procedure file, open Igor Pro, and select MaCosipile (unless Auto-
Compile mode is on, whereby this is not needed). The Macrasursbould have the
command for the simple panel demo. This will generate theldagiow.

34

rB an udFLPanel

File Loader TabDelimitedxy [3]

File List

Mode Auto | :-]

User Data

Store @ root:

{ Test) (Load)

LR e

4

Some of the file loaders that appear are included with the dasna proof-of-
concept.

Clicking on the Test button prints out the entire contentsd®fL..

Clicking on the Load button runs the chosen file loader.

To test a “standardized” file loader, first close the exissimgple panel. Then install
the procedure file for a standardized file loader accordintg iostructions and recom-
pile in Igor Pro. Now, select the panel demo under the Macresunand the installed
file loader should appear in the list of file loaders. You cast various inputs (file list,
processing mode, user data, and the value for toFolder)ihy tise panel.

7 Acknowledgments

Thanks Wavemetrics! The ability to use STRUCTURES and Fehaofake this entire
process much easier.

8 Contact

Suggestions and comments should be posted at the Igor EgeNseb site. | will be
using it exclusively to track this project.

9 Legalize

This software is free to use as per the terms of any other glybktleased software.
Enjoy!

35

	Summary
	Background
	Loading Data Using Igor Pro Menus
	Loading Data Using Igor Pro Commands
	Loading Data Using User Defined File Loaders
	Loading Data Using Standard User Defined File Loaders

	Setup
	Requirements
	Package Contents
	Installation

	A Standardized File Loader
	Format
	Function Call, Name, and Parameters
	Structure Name
	Structure Contents

	General Use
	Programming Applications
	Using Templates for Basic Development
	Reading Input Parameters to Find Files
	Using Input Parameters to Refine Loader Processing
	Using Return Parameters to Assure Standard Behavior

	Some Standardized File Loader Processing Functions
	Zeroing the Standard Structure
	Assuring the File Paths
	Moving To and Creating New Data Folders
	Setting Error Codes and Messages
	Handling Error Codes and Messages
	Querying the Processing Modes
	Querying the Renaming Options
	Initializing a Loader
	Running a Loader
	Listing Available Loaders
	Renaming Inputs

	A Simple Standardized File Loader Panel
	Acknowledgments
	Contact
	Legalize

