
Standards for User Defined File Loaders
A Working Proposal

Version 1.06(dev)

J. J. Weimer

August 25, 2007

Standardized

File

Loader

Igor Pro

Data

File A

Data File B

Data

File C

Common

User

Interface

Distribution Details
Developed with Igor Pro Version: 6.0.2
Procedure Files: udFLStandardFunctions and udFLStandardStructure
Demos: SimpleStandardLoaderPanelDemo (procedure file)
Experiments: none XOPS: none Help Files: none
Requires Packages: none

Abstract

This is a proposal to define standards for how user defined file loaders are designed to
interface with other user defined packages in Igor Pro.

The proposed standards based on defining proper naming conventions and on using
a STRUCTURE to carry information (processing parameters) between the file loader
and the routines that interact with it.

Conventions and standards are proposed, the file loader structure is defined, and a
basic application is presented in this document. A simple panel is also provided with
the package distribution for users to test development of “standardized” file loaders.

This document was generated using LATEX

Contents
1 Summary 1

2 Background 1
2.1 Loading Data Using Igor Pro Menus. 1
2.2 Loading Data Using Igor Pro Commands. 2
2.3 Loading Data Using User Defined File Loaders. 2
2.4 Loading Data Using Standard User Defined File Loaders. 2

3 Setup 3
3.1 Requirements. 3
3.2 Package Contents. 3
3.3 Installation . 4

4 A Standardized File Loader 4
4.1 Format. 4

4.1.1 Function Call, Name, and Parameters. 5
4.1.2 Structure Name. 6
4.1.3 Structure Contents. 7

4.2 General Use. 16
4.3 Programming Applications. 16

4.3.1 Using Templates for Basic Development. 16
4.3.2 Reading Input Parameters to Find Files. 19
4.3.3 Using Input Parameters to Refine Loader Processing. 22
4.3.4 Using Return Parameters to Assure Standard Behavior. 27

5 Some Standardized File Loader Processing Functions 30
5.1 Zeroing the Standard Structure. 30
5.2 Assuring the File Paths. 31
5.3 Moving To and Creating New Data Folders. 32
5.4 Setting Error Codes and Messages. 32
5.5 Handling Error Codes and Messages. 32
5.6 Querying the Processing Modes. 33
5.7 Querying the Renaming Options. 33
5.8 Initializing a Loader. 33
5.9 Running a Loader. 33
5.10 Listing Available Loaders. 34
5.11 Renaming Inputs. 34

6 A Simple Standardized File Loader Panel 34

7 Acknowledgments 35

8 Contact 35

9 Legalize 35

i

1 Summary

File loaders are an integral part of Igor Pro. They provide a way to input data from files
into Igor Pro. A wide variety of data file formats exist outside of Igor Pro. No one file
loader exists in Igor Pro to handle them all. Igor Pro provides a File Loader panel to
input a number of common formats. Loaders for file formats outside of the common
ones are generally developed by users of Igor Pro specific to their needs.

Two potential shortfalls exist in the current framework of development for user-
defined file loaders. First, new users of Igor Pro are not always aware of the existence
of file loaders other than those built-in to Igor Pro. Secondly, even when the existence of
a specific user-defined file loader is well published and its use well-documented, it is at
best “different” in its interaction than any other file loader and at worst “idiosyncratic”
in how it is to be used. These problems can be a frustration fornew users and seasoned
programmers alike.

This document generates a proposed STANDARD for how user defined file loaders
are to interact with other routines. It also outlines an example file loader and provides a
simple file loader panel to test development of “standard” file loaders.

This document deals only with how files can be loaded in a standard manner. How
the data are processed once they are loaded is left to the userto determine. In this
regard, standardized file loaders should not presume to do any display or analysis of the
data after they are loaded. Their sole task is to bring some type of file into Igor Pro in a
consistent (standardized) manner.

In other words, when creating a “standardized” file loader, preparation of standard-
ized routines for data processing should be left as an exercise for the user :-).

2 Background

Files can be loaded into Igor Pro in on of three ways.

2.1 Loading Data Using Igor Pro Menus

The top level method to load files is using the Load Waves menu option and associ-
ated sub-menus. These generally provide a dialog box or interface panel. Options are
available to select the format of the files.

1

2.2 Loading Data Using Igor Pro Commands

A number of operations are provided in the Igor Pro command language to read files.
The most common are outlined below. In writing a user-definedfile loader within Igor
Pro, you will likely use one or more of these commands as part of your file loader.

Open
This command can open a file, save a file, or just verify that a file is available to be
opened. A related command isOpenNotebook. Any file that is opened should be closed
using theClose command.

FBinRead
This command is used to read data from a file in a byte-wise manner. Commands that
are associated with controlling the reading areFSetPos andFStatus.

FReadLine
This command is used to read binary data from a file. Commands that are associated
with controlling the reading areFSetPos andFStatus.

LoadData
This command is used to read data from a different Igor Pro experiment into the current
Igor Pro experiment or from a file-system folder containing Igor Pro type data.

2.3 Loading Data Using User Defined File Loaders

A wide range of user-designed file loaders have been created by the community of users
of Igor Pro. Most are available at no additional cost. One distinct problem is, a central
repository of file loaders for Igor Pro does not (yet) exist. Another problem is, because
no standard exists for how a file loader should be designed andshould operate, each
file loader can be expected to be different from all others. Some file loaders contain
well-designed panels or dialogs to guide the user. Others can require some external
programming.

2.4 Loading Data Using Standard User Defined File Loaders

The purpose of this document is to put forward a standard paradigm for how user defined
file loaders should work. It advances a sequence of proposalsand provides a basic
example of how such a standard can be used to create a single interface for a user to
access all “standardized” file loaders.

2

3 Setup

3.1 Requirements

The procedures with this distribution have only been testedon Igor Pro 6.0 and are
defined with a minimum requirement of Igor Pro 6.0. Anyone whohas success in using
the procedures in this distribution under earlier versionsof Igor Pro, please report such.

3.2 Package Contents

The procedure is provided in a ZIP archive. Unpacking the archive will reveal the pri-
mary (root) folder udStFiLrsStandardsN, where N is the version number. The directory
structure inside this folder is shown below.

SimpleStandardLoaderPanelDemo.ipf
This procedure file generates a panel that can be used to test development of a file loader
against the proposed standards.

udFLStandardsWorkingProposal.pdf
This document.

udStandardizedFileLoaders
This folder contains procedure files needed to implement thestandard for file loader de-
velopment and use. Given that this document is a proposal only, the naming convention
is only presented to distinguish the two procedures as a distinct package (or module).
The two required files inside this folder are

udFLStandardFunctions.ipf
This procedure file contains functions that may be used as part of a “standard” file
loader. It is basically provided as a benefit for developers as a way to help avoid re-
peating the coding of what might be considered to be core functions for a file loader,
especially in how it interacts with the standard loader structure defined in this document.

3

udFLStandardStructure.ipf
This procedure file contains the proposed standard structure.

3.3 Installation

The directoryudStandardizedFileLoaders MUST be installed in ONLY one way.
Move or copy the entire directory into theUser Procedures directory of your local
installation of Igor Pro. You must do this installation before you open any experiment
that is to use the demo of the Simple Standard Loader Panel.

You can rename the directory after it is installed in theUser Procedures directory
(although this is not recommended!). You can also install future “standardized” file
loaders into this directory as a way of keeping track of them (this is recommended).

TheSimpleStandardLoaderPanelDemo.ipf procedure file can be installed in one
of two ways.

• To have the simple loader panel available every time you start Igor Pro, move or
copy the procedure file to theIgor Procedures directory of your local installa-
tion of Igor Pro.

• To have the simple loader panel available only when you wish to include it, first
move or copy the file to theUser Procedures directory of your local installation
of Igor Pro. Then, when you wish to use the panel in a specific experiment, open
the Macros window while in Igor Pro and put the line

#include "simplestandardloaderpaneldemo"

somewhere directly after the#pragma rtGlobals=1 directive that usually ap-
pears in this window.

4 A Standardized File Loader

4.1 Format

The basic workings of the “standard” structure for programming purposes is illustrated
by the simple coding for a “standardized” file loader that is shown below.

4

Static Function udFLIinitStructure(udFL)

initialize the structure

Function udStFiLrMYLOADER(udFL)

do whatever is required by MYLOADER to input the file and storethe data

The devil is in the details, though. To have proper operationof “standardized”
functions requires that certain conventions be followed when developing them and when
programming to use them.

4.1.1 Function Call, Name, and Parameters

The first conventions provide for consistent access to the file loader function.

Proposal 1
The file loader shall be accessed via a call of the formFunction XXX(YYY),
whereXXX is a name that is to be defined (by Proposal 2) andYYY are the
parameters to be defined (by Proposal 3).

The second convention provides a consistent way to get the name of all standardized
file loaders in use at any time.

Proposal 2
The name of the file loader functionXXX shall be prefixed byudStFiLr fol-
lowed by the name of the file loader (with or without capital letters).

When a user defined file loader conforms to the above convention, a call to the Igor
Pro string function FunctionList(“udStFiLr⋆”,“;”,“KIND:6”) will return a separated list
of all standardized file loader functions currently accessible in a given experiment. The
prefix “udSFL” that appears on each loader name can be stripped via further processing
as needed.

Note that, just because a file loader appears in a list of accessible files when searched
using the method shown above does not mean it will work properly. The third conven-
tion therefore provides a consistent way to interact with routines that make function
calls to the loader.

5

Proposal 3
The function itself shall take one parameter, a pointer to the standard file
loader structure, as

Function udStFiLrMYLOADER(sP)

STRUCT SSS sP

The use ofsP to define the abbreviation for (pointer to) the structure is optional.
The nameSSS of theSTRUCT is to be defined (by Proposal 4)

4.1.2 Structure Name

In order to be able to use the file loader structure for any file loader, it must be accessed
by the same name.

Proposal 4
The nameSSS of the structure shall beudFLStandardStructure as an no-
tation for User-Defined File Loader Standard Structure. A suggested abbrevi-
ation for the pointersP to the structure isudFL (as used throughout this docu-
ment).

Examples
Accepting the above four proposals as conventions, the following examples show “stan-
dardized” file loaders:

Function udStFiLrTabDelimitedXY(abCD)

STRUCT udFLStandardStructure &abCD

Function udStFiLrXYZa(udFL)

STRUCT udFLStandardStructure &udFL

6

By comparison, the following examples show non-standardized file loaders:

Function udStFiLrTabDelimitedXY(abCD,X)

STRUCT udFLStandardStructure &abCD

variable X

Function MyLoader(udFL)

STRUCT udFLStandardStructure &udFL

Static Function udStFiLrMyLoader(udFL)

STRUCT udFLStandardStructure &udFL

4.1.3 Structure Contents

The remaining conventions deal with the internal operationof a standardized file loader.
In discussing them below, the assumption is that, as a programmer, you are already
familiar with how to use STRUCTURES in Igor Pro. The best example case is when
you have written control procedures for panel controls and have worked through the
examples to understand when structure parameters are “resident” in a function and when
they disappear. If you are not to this point, then you may not yet be ready to write a
”standardized” file loader. You may however find encouragement from the somewhat
tutorial approach the following discussion tries to take.

First, the standard structureudStFiLrStandardStructure is a place to store pa-
rameters needed by the file loader to interact consistently with its “surroundings” (the
calling functions). The structure is not a place where data from the data files are stored
(they are stored directly into Igor Pro folders for example).

The contents of the structure should be established to provide consistent function-
ality and optimal utility. This interest establishes the thrust of the next proposal and its
sub-proposals.

7

Proposal 5
The udStFiLrStandardStructure shall contain parameters covering four
types of information, as presented below.

Descriptors
The parameters in this section describe the “character” of the file loader.

Inputs
The parameters in this section provide a way for the programmer to input com-
mands to control what the file loader is to do.

Localizers
The parameters in this section define where the file loader is to operate when it
does its job.

Returns
The parameters in this section define the success or failure of the file loader
when it completes its job.

Each type of information in the standard file structure is to be covered by defined
parameters, as presented on the next few pages. In those cases where the parameter
definition is UNDEFINED, further investigation is needed toestablish a proper standard
or standards for the parameter.

8

Proposal 5A
The following five parameters shall be specifically contained within the
Descriptors section of the file loader:

string mimetype

This string defines themimetypeof files that can be loaded by the loader. An
example is “TEXT” or “IGOR”.

string extensions

This string (list) defines the file extensions that can be loaded by the loader.
It is a semi-colon separated list of all file extensions. An example is “.txt;.dat;”.

int32 itemsType

This numeric parameter defines the type of data that are stored by the loader.
It is a bit-wise comparative number following the conventions:

BIT
0: global
1: keyword-list (using ”=” and ”;”)
2: wave
3: matrix
4: image
5: notebook
6: procedure file
others: user defined

When a loader stores more than one type of data simultaneouly, the resultant
value foritemsType shall be a BIT-wise addition of values. For example, a
loader that stores globals and images simultaneously wouldhave anitemType
of 1 + 16 = 17, while a loader that stored waves and a notebook would have an
itemType of 4 + 32 = 36. When a loader stores more than one type of data,
and the type it stores depends on the processing mode, theitemType should be
set depending on on the processing mode and user control, as discussed later
in this document.

9

Proposal 5A (continued)

int32 itemsDim[4]

This numeric parameters defines the “dimensionality” of theloaded data. It
is a positive or negative integer number in an array storage that depends on
itemsType following the conventions:

itemsType = 1 (global)
itemsDim[0] = 1: variable
itemsDim[0] = 2: string

itemsType = 2 (keyword-list)
itemsDim[0] = 1: list uses "="
itemsDim[0] = 2: list uses ":"

itemsType = 4 (wave)
itemsDim[0] = -1: unscaled numeric wave
itemsDim[0] = 1: scaled numeric wave
itemsDim[0] = -2: unscaled text wave
itemsDim[0] = 2: scaled text wave

itemsType = 8 (matrix)
usingN to indicate the matrix dimension
N = 0: rows;N = 1: columns;N = 2: layers;N = 3: chunks
itemsDim[N] = -1: unscaled numeric
itemsDim[N] = 1: scaled numeric
itemsDim[N] = -2: unscaled text
itemsDim[N] = 2: scaled text

itemsType = 16 (image) – TO BE DEFINED!

itemsType = 32 (notebook)
itemsDim[0] = -1: unformatted
itemsDim[0] = 1: formatted

itemsType = 64 (procedure) – TO BE DEFINED!

10

Proposal 5A (continued)

string procModes

This string list defines the options available to a user to control the file loader.
The first mode shall be “Auto”. All other modes are established by the
programmer. An example forprocModes for a file loader with four loading
modes is “Auto;Via Dialog Box;Without Preprocess;Manual;".

int32 setNames

This variable is both a Descriptor and an Input. As a Descriptor, it defines
whether the loader can rename the parameters that it reads (strings, variables,
waves, or matrices). As an input, it directs the loader to rename the parameters
in a certain way. This variable is a BIT-wise value that uses the conventions
below.

BIT
0: loader sets the input names (the user has no control)
1: user can (re)name input according to file names (+ number)
2: loader can (re)name input according to a defined file header
3: user can (re)Name input according to a prefix (+ number)
4: user can manually (re)name each input (via a dialog)

When a given (re)naming option is supported in any mode selected by
udFL.userCtrl, that mode should typically be supported in all modes (with
perhaps the exception of the"Auto" mode). All loaders should support renam-
ing with BIT = 0 (ie,udFL.setNames = 1). This is essentially a mode where
the loader pre-defines the input names. When two or more renaming options
are supported, the return value should be the BIT-wise sum ofthe modes. For
example, a loader that supports file name and manual renamingwill return a
value of (1 + 2 + 16) = 19 forudFL.setNames.

11

Proposal 5B
The following parameters shall be specifically contained within the Inputs
section of the file loader:

int32 eventCode

This numeric parameter defines the “action” that is evoking the file loader. A
value ofeventCode = -1 shall mean, a request has been made to kill the file
loader package (remove it from the current Igor Pro experiment). All other
eventCodes are for the programmer to define.

int32 userCtrl

This numeric parameter is the process control variable for the file loader. All
positive values ofuserCtrl map directly onto the index value of the mode in
theprocModes list, starting from a count of 1. Two specialuserCtrl values
shall also apply.

Value
-1: initialize the loader
0: query the loader for its Descriptors

A file loader with procModes = “Auto;Via Dialog Box;Without Prepro-
cess;Manual;" would use mode “Without Preprocess” whenuserCtrl = 3.

string userData

This string parameter is an option to further refine a processing mode in the file
loader.

12

Proposal 5B (continued)

int32 reportCtrl

This numeric parameter provides a way to define how the loaderreports on its
activities. Three specific modes shall be reserved.

Value
-1: silent
0: normal
1: verbose

The programmer is free to define the level of reporting provided by the file
loader in each case.

string plugIns

This string list is an option to allow a programmer to enhanceor supplement
the loader through “plug-in” functions. A plug-in functionis one that accepts
the udStFiLrStandardStructure and uses its parameters to speed up or
enhance manipulations within the loader. A prime example isto make a
file loader use a certain XOP routine that does something thatotherwise is
hard-coded into the loader. Providing a loader that is awareof the XOP is
equivalent to making it “aware” of the XOP by adding the function name to a
list in plugIns.

int32 setNames

This parameter is both a Descriptor and an Input. As an input,it directs the
loader to (re)name the input according to the conventions given previously in
the Descriptors section.

string namePrefix

This string is used to define the prefix for (re)naming input values when
udFL.setNames = 8.

13

Proposal 5C
The following four parameters shall be specifically contained within the
Localizers section of the file loader:

string pathStr

This establishes the path to the directory containing the file(s) to be loaded.
The string uses the Igor Pro convention of path names being separated by ":"
(colons).

string fileList

This establishes the list of files to be loaded. The list can contain the full
path to the file(s), a partial path to each file(s), or the file name(s) without
extension(s), as discussed later in this document.

int32 returnCtrl

This numeric value controls additional aspects of how the loader reports its
progress. In particular, this value controls whether Igor Pro global parameters
such as S_value and V_flag, that are normally created during Igor ProOpen
processes, are also to be created by the file loader. Two specific values shall be
reserved.

Value
0: normal (all return information is in the file loader structure)
1: enhanced (also create additional “global” parameters)

string toFolder

This string defines the Igor Pro folder where the data are to bestored. It shall
always be defined relative to theroot level.

14

Proposal 5D
The following four parameters shall be specifically contained within the
Returns section of the file loader:

int32 itemsCount

This numeric value provides the total number of items loaded.

string itemsList

This string list provides the names of the items (globals, waves,. . .) that have
been loaded.

int32 errCode

This numeric value defines whether any error occurred duringthe execution of
the file loader. Two return values shall be reserved.

Value
0: any error is only a warning
-1: any error is considered fatal (and should likely lead to an abort)

string errMsg

This string (list) returns any error messages generated by the file loader during
processing. It shall accumulate warnings sequentially. Therefore, warnings
can be dumped to a report. By comparison, any fatal error messages shall
overwrite any prior contents, with the understanding that they are designed to
be handled by an immediateDoAlert followed by anAbort.

In addition to the above parameters within the structure, the file loader itself
shall return a 0 when it has executed properly and a -1 when some error (warn-
ing or fatal) has occurred.

15

4.2 General Use

As a general user of Igor Pro, you will typically have no direct interaction with the
Structure procedure file that is part of this package distribution. Your only need is to
maintain an updated copy of the file (and its companion Functions file) in your Igor Pro
distribution. All procedures that conform to the standardsproposed in this document
will then be accessible to you, ideally through “plug-and-load” interfaces, such as the
one provided by the Simple File Loader Panel Demo.

4.3 Programming Applications

4.3.1 Using Templates for Basic Development

A basic application of the file loader standard structure is illustrated in the two templates
below. These templates are written in Igor Pro, they are not written as C/C++ for XOPs.
Having someone provide such templates based would be welcomed as an addition to
this document.

Initialization
The first function is the initialization routine for the loader.

Static Function udFLInitStructure(udFL)

STRUCT udFLStandardStructure &udFL

udFLZeroStructure(udFL) // zero the structure

udFL.mimetype = "..." // set the mimetype

udFL.extensions = "..." // set the extensions

udFL.itemsType = ... // set the itemType

udFL.itemsDim[0] = ... // set the itemsDim

udFL.proModes = "Auto;..." // set the procModes

if (udFL.userCtrl == -1)

print udFL // show descriptors in history

endif

return 0

end

The function call toudFLZeroStructure(udFL) assures that all parameters in the
file loader standard structure are properly defined (as explained later in this document).

16

The remaining lines define the character of your file loader. This information is passed
back to the primary calling routine via your loader function.

Note that your initialization routine is defined as a STATIC function so that it is
local to your procedure and only accessed by going through your file loader function.

File Loader
The second function is the entry point to your loader function. A basic template for a
“standardized” file loader is shown below.

Function udStFiLrMyLoader(udFL)

STRUCT udFLStandardStructure &udFL

if (udFL.eventCode==-1)

... procedure file is being killed

... do whatever is needed to clean up

return 0

endif

switch(udFL.userCtrl)

case -1:

case 0:

udFLInitStructure(udFL)

break

case 1:

... auto-load mode

... assume all parameters are defined in structure

... do auto-processing

break

case N:

... mode N

... do whatever processing

break

...

endswitch

return 0

end

17

Each part of the template is presented in turn below.

Clean-up

The first portion of the above template provides a standard way to make your file loader
aware of an event that is going to kill the procedure window containing your file loader.
You can thereby write specific “clean-up” procedures withintheif ... endif portion
of the loader. Thereturn 0 command assures that no further processing is done by the
loader after all the clean-up steps have completed.

In providing a standardudFL.eventCode = -1 as a method to notify the file loader,
the assumption is, any routine that attempts to kill your fileloader procedure should
passudFL.eventCode = -1 to it first. This may not always occur. One way to assure
this may be through the use of Hook functions within your procedure itself. Further
clarification of this process remains to be established.

Initialize

The initialization of the file loader occurs ifudFL.userCtrl = -1 or 0 when the file
loader is invoked. In the first case, the initialization is followed by a report of the
Descriptors of the file loader. In the example initialization routine, this is done by
printing the entire structure to the history window. Further possible refinements to this
are discussed later in this document. WhenudFL.userCtrl = 0, the file loader only
initializes itself, nominally to its base set of Descriptors.

Auto-Process

The auto-process mode of the file loader occurs ifudFL.userCtrl = 1 when the file
loader is invoked. A primary assumption is, all parameters in the Inputs and Localizers
sections ofudFL are pre-defined (by the user in some way) when auto-process mode is
invoked. Your file loader should therefore not need to use dialog boxes or prompts for
user input in the auto-load mode! It may (and indeed should) test that all parameters are
indeed properly set and return an appropriateudFL.errCode andudFl.errMsg if they
are not (as discussed later in this document).

Other Process Modes

Other processing modes are established byudFL.userCtrl values greater than 1. The
value ofudFL.userCtrl is to map exactly with the index value of the “mode” string
in udFL.procModes. As an example, the table below shows how processing modes
and user control values map for a file loader with three loading modes. The first menu
selectable mode is “Auto” by definition. The second mode, “Pre-Select”, is run when
udFL.userCtrl = 2. The third mode, “Manual”, is run whenudFL.userCtrl = 3.

18

User Control Mode Notes
-1 Initialize and Query typically not shown in a menu selection
0 Initialize (only) typically not shown in a menu selection
1 Auto first menu selection for all file loaders
2 Pre-Select a specific mode for this file loader
3 Manual a specific mode for this file loader

For the above table, to create the proper sequence for relating udFL.procModes and
udFL.userCtrl, the value ofudFL.procModes would be initialized as “Auto;Pre-
Select;Manual;” (a string list).

4.3.2 Reading Input Parameters to Find Files

The use of input parametersudFL.eventCode andudFL.userCtrl have been illus-
trated in the example above. Two remaining parameters are essential to the “Auto”
mode of processing. They areudFL.pathStr andudFL.fileList in the Localizers
section of the file loader standard structure. These two parameters define where the
files are located (and are therefore considered as localizers, although they also are re-
quired input parameters in “Auto” mode).

Your file loader can use the two parameters in any way you want.Some general
ways are proposed below for further consideration.

Loading a Single File
When the “Auto” mode of loading is designed to load only a single file, a recom-
mended convention is thatudFL.pathStr will contain the full path to the file and
udFL.fileList will contain the filename (with extension). In this case, your file
loader could create a temporary data Path, load the file, and then delete the tempo-
rary data path. An example code to do this is shown below. In this code, the function
udFLAssureFilePaths(udFL) is a function provided in the standard set, as discussed
later in this document.

19

case 1:

variable ic, nc = udFLAssureFilePaths(udFL), refNum

string fname

switch(nc)

case -1:

... handle as error

break

case 1:

fname = StringFromList(0,udFL.fileList)

NewPath/O/Q tmpFPath $udFL.pathStr

Open/R/Z=1/P=tmpFPath refNum as fname

if (V_flag!=0)

Close refNum

KillPath/Z tmpPath

... process the error that occurred

endif

Close refNum

... process the data

KillPath/Z tmpPath

break

default: // multiple files (see below)

...

endswitch

break

Loading Multiple Files
The “Auto” mode of loading is actually best designed when it can load many files of the
same format, potentially from multiple directories. When all files are in the same direc-
tory, udFL.pathStr should contain the path andudFL.fileList just the file names.
When the files are in multiple directories,udFL.pathStr is to be an empty string (“”)
andudFL.fileList is to contain the list of files with their full path names, including
extensions. This convention is assured by the functionudFLAssureFilePaths(udFL)

(as discussed later in this document). An example code to handle one of the cases is
shown below.

20

case 1:

...

switch(nc)

... handle error and single file cases

default:

if (strlen(udFL.pathStr)!=0)

... all files are in the same directory

... loop on fname while in same path

else

do

fname = StringFromList(ic,udFL.fileList)

if (strlen(fname) == 0)

break

endif

Open/R/Z=1 refNum as fname

if (V_flag!=0)

Close refNum

... process the error that occurred

endif

... process the data

while(1)

endif

break

endswitch

break

Handling Empty File Lists
You may wish to allow a user the option to select file(s) for loading by coding file se-
lection routineswithin your loader. Of course, this MUST not happen in the “Auto”
processing portion of your loader. You may decide that, an empty udFL.fileList is to
be taken as a directive by the user to open a file selection dialog. Again, this MAY NOT
happen whenudFL.userCtrl = 1. In this case, an empty value ofudFL.fileList
is to be handled as an error from the user input (this will be assured by a call to
udFLAssureFilePaths(udFL).

In those cases where you do allow the user to select files by specific selection dialogs
or prompts within your file loader, a good practice is to put the file selections properly

21

into udFL.pathStr andudFL.fileList following the conventions proposed above
for loading a single file or loading multiple files. When your loader also processes the
incoming data, this can in fact make your code easier to oversee, as the example below
illustrates.

switch(udFL.userCtrl)

case 1:

break

case 2:

... allow user to select files list

... store file names in udFL.fileList

break

endswitch

... load file(s) in udFL.fileList

4.3.3 Using Input Parameters to Refine Loader Processing

The parameters in the Inputs section ofudFL are to by defined by routines outside of
your file loader (how this can be done in a “standard” way is part of the discussion in
the section on the standardized file loader panel later in this document). You should
NOT change them inside your file loader. You should use them as“switches” to define
what your file loader does.

The use ofudFL.eventCode andudFL.userCtrl have been illustrated in the pre-
ceding section. The examples below show how other input parameters can be used to
further refine what your file loader does.

Defining Sub-modes
The stringudFL.userData provides one way of having sub-modes of processing for
any “main” processing mode. This is best illustrated by a programming example. In the
section on the next page, only that part of the file loader thathandles a mode when the
valueudFL.userCtrl = 2 is shown.

22

case 2: // my loader does "pre-processing" in this mode
if (strlen(udFL.userData)==0)

... no special sub-mode pre-processing is requested

... do all pre-processing

break

endif

strswitch(udFL.userData)

case "preformat":

... only preformat mode is requested

break

case "overlay":

... only overlay mode is requested

break

default:

... the sub-mode string is not recognized

... handle this as an error

return -1

endswitch

break

The sub-mode strings required from the user for your file loader can be as simple
or as complex as you want. Verbose types of strings, as in the example above, are one
example. Requiring strings that are more UNIX-like, for example “-p” for “preformat”
and “-o” for overlay, is another example. You may even require numerical values (as
strings) usingudFL.userData and use spaces as separators to enable “multiple” or “se-
quential” sub-mode processing. Perhaps the only rule aboutusing theudFL.userData
string parameter is, the string required inudFL.userData at any point in your file loader
should not be required to contain special characters such as⋆ or ?.

Note also, you should be certain to handle cases when the input udFL.userData
does not equal any of your desired selections. The example above shows, this is handled
by thedefault: case of the string switch selection and is processed as a userinput
error.

Finally, the primary assumption whenudFL.userCtrl = 1 is, your file loader will
operate in “Auto” process mode. In particular, this means, no special sub-modes are to
be selectable. Therefore, whenudFL.userCtrl = 1, any string value that is contained
in udFL.userData should be ignored within that portion of your file loader!

23

Localizing Processing
The objective of many file loaders is to store data in Igor Pro so that it can be further
processed. This is certainly true for global, keyword-list, wave, matrix, and image data.
In such cases, the strong recommendation within the Igor Procommunity is to establish
and use Igor Pro data folders as a place to store the data.

The discussion in this portion of the document assumes that you, as a programming,
are familar with creating, setting, and changing data folder locations by appropriate Igor
Pro coding within your file loader.

The file loader structure offers the parameterudFL.toFolder that is set by the user
as a way to direct any file loader to a specific location where itMUST store the data.
This directive is an IMPERATIVE, not an optional directive.In other words, when the
parameterudFL.toFolder is not empty, your file loader is being commanded to change
to the folder specified by the string and to load data only intothat specific folder.

The value inudFL.toFolder is always a full folder path relative to the root folder.
An empty value means, data are to be stored at the root folder level.

A standard functionudFLSetDataFolder(udFL,[setit]) has been provided to
allow your loader to create and change to a specific folder based on the value pased in
udFL.toFolder. Its use is illustrated in the example on the next page.

Your file loader MUST also return to the original data folder before the loader ex-
its its processing. In general, a recommended way to assure that you always return
to the original data folder is to include proper coding forGetDataFolder(1) and
SetDataFolder, as is also shown in the example on the next page.

24

Function udStFiLrMyLoader(udFL)

STRUCT udFLStandardStructure &udFL

string cdf = GetDataFolder(1)

if (udFL.eventCode==-1)

...

SetDataFolder $cdf // reset just in case the data folder was changed
return 0

endif

udFLSetDataFolder(udFL)

switch(udFL.userCtrl)

...

SetDataFolder $cdf

return -1

...

endswitch

SetDataFolder $cdf

return 0

end

Within the confines of the above directives forudFL.toFolder, your file loader is
otherwise free to create sub-folders in any of its loading “modes”, including the “Auto”
mode. At the end, your file loader will inform the user of any folders created by return-
ing proper values in theudFL.itemsList parameter, as discussed later in this docu-
ment.

Reporting Progress
The file loader standard structure provides one parameter todefine the extent of report-
ing requested by the user during processing. The parameterudFL.reportCtrl can
be used to define three (or more) “modes” of reporting information. In Silent mode,
the processing proceeds with no reports. In Normal mode, theloader reports on certain
stages of processing. Finally, in Verbose mode, the loader reports frequently through-
out. The level of reporting in each mode is left entirely to the programmer. An example

25

of how this can be used to document the progress of theOpen command is shown in the
code below.

switch(udFL.reportCtrl)

case -1:

Open/R/Z=1/Q ...

break

case 0:

Open/R/Z=1 ...

break

case 1:

Open/R/Z=1 ...

print "Just opened the file for reading ..."

break

endswitch

Accessing Plug-Ins

Plug-ins should be understood to be routines that might be ofgeneral use to a wide
range of file loaders or segments of code that are written in a more compact manner
(ie, as an XOP). To be accessible as a plug-in, the plug-in function will be required to
conform to conventions in its name (udFLPlugInXXX(YYY)) and parameters (YYY is
the file loader standard structure).

After the file loader standard structure is zeroed usingudFLZeroStructure(udFL),
the parameterudFL.plugIns will contain a string list of all currently accessible plug-
ins. This list can be checked for a particular plug-in and theplug-in used when available.
The example code below shows how this could be designed.

if (strlen(ListMatch(udFL.plugIns,"udFLPlugInInvertData")==0)

... process by Igor Pro code

else

udFLPlugInInvertData(udFL)

endif

26

4.3.4 Using Return Parameters to Assure Standard Behavior

Defining Character
The “character” of the file loader is an indication of what files it is designed to handle
and how (in general) the results will appear after it is complete. The parameters in the
Descriptors section of the file loader standard structure define this. Whenever an ex-
ternal routine queries your file loader, it should return proper values of the descriptor
parameters. The initialization template shown previouslyin this document is one gen-
eral way this can be done. Further comments about each descriptor parameter are given
below.

No convention applies when the file loader can handle more than one mime type.
One proper method of return is to set the mime type to the most common value. Alter-
natively, the mimetype can be set to an empty value. Finally,the mime type can be set
dependent on other user inputs, such asudFL.userCtrl or udFL.userData, if this is
appropriate to how the loader behaves. In no event (as of thisversion) should the mime
type be set to more than one value. This option is reserved forfuture versions of the
structure.

When more than one file extension can be loaded, the convention is to create a
string list of all possible extensions. The understanding is, the search for file extensions
takes precedence over the search for mimetype when searching for files to load, and, as
needed, all files containing all possible file extensions will be collected and displayed
for selection by a “standardized” input routine.

When the file loader can return more thanudFL.itemsType value, and absent any
other qualifiers, it should return the BIT-wise addition of all possible values. The exam-
ple in Proposal 5A illustrates this convention. For such “multi-type” file loaders, when
the value ofudFL.itemsType depends specifically onudFL.userCtrl, the value of
udFL.itemsType must be returned appropriate to the value ofudFL.itemsType. The
example code on the next page shows such behavior in an outline.

27

... within initialization function

udFL.itemsType = 17 // loader returns globals and images

... within the actual loader function

switch(udFL.userCtrl)

case 1:

... load both globals and images

udFL.itemsType=17

break

case 2:

... load only images

udFL.itemsType=16

break

endswitch

When only one data type is stored by the file loader, the conventions for return-
ing proper values inudFL.itemsType also apply for the value ofudFL.itemsDim[N].
When more than one type is stored by the file loader, no convention exists for setting
the value ofudFL.itemsDim[N]. An appropriate return value may be a value of ZERO
(0), to indicate a state that requires further study by the user.

With the exception of the convention that “Auto” be the first value, the proper string
names to return inudFL.procModes are left entirely to the programmer. The only
suggestion is, the names should be short (to fit in a popup menulist) and descriptive (to
inform the user of their function). By the way, the language used for the string is also
entirely up to the programmer. One method of preparing language localizations for this
menu is to useStrConstant values in a localization file. The example below shows a
section to define the values for English or German, with the current localization being
for German.

28

... in the loader preamble

#define DEUTSCH // this is a German localization

#ifdefine ENGLISH

StrConstant udFLprocModes = "Auto;Select the Files;Test;"

#endif

#ifdefine DEUTSCH

StrConstant udFLprocModes = "Auto;Files Auswahlen;Prufen;"

#endif

... in the initialization routine

udFL.procModes = udFLprocModes

Pre-processing Data
A “standardized” file loader ONLY loads the file as data. It is NOT to be designed to
display or analyze the data after it is loaded. This extends into a gray area however,
because some file loaders may also provide “pre-processesing” types of routines.

A valid pre-processing routine is understood to be a routinethat transforms one
of the data types into a different data type. A function that takes a (previously loaded)
notebook and translates it into a keyword-list of values is avalid pre-processing routine.
A function that transforms a matrix to an image is also valid.A function that displays
an image for the user is not a valid part of a file loader.

Whenever a pre-processing (or transformation) routine is applied to data by the file
loader, the value ofudFL.itemsType must reflect the value of the data AFTER the
transformation has been applied. This also applies to the value ofudFL.itemsDim[N].

Returning Item Details
The two parameters,udFL.itemsCount andudFL.itemsList, provide additional doc-
umentation of what the file loader has stored.

The value ofudFL.itemsCount is the total count of all items stored by the file
loader. The value ofudFL.itemsList is a string list of the items loaded using full path
name designations starting from theroot: data folder.

In one sense,udFL.itemsCount is redundant information because it can be directly
obtained by counting the items inudFL.itemsList. In another, it provides a direct
value for a user to quickly confirm everything has been loadedproperly, for example
when the items are the same type but may be loaded across different sub-folders.

29

Handling Errors
The values ofudFL.errCode andudFL.errMsg should be used to inform the user of
problems during the loading. A standard function has been provided to “set” the values,
as the example below shows.

case 1:

if (udFLAssurePaths(udFL)<0)

udFLSetError(udFL,"File names are not proper",-1)

SetDataFolder $cdf

return -1

endif

... continue processing in Auto mode

Errors that cause aborts should cause a return from the loader with a value of -1.
Otherwise, successful loading should return a value of 0.

5 Some Standardized File Loader Processing Functions

A collection of functions is provided as part of a standard package. They have been
referenced in the examples above. Their specific use is described in more detail below.

5.1 Zeroing the Standard Structure

The command below will fill the file loader standard structurewith default (blank or
otherwise) values, as shown. In particular, the value ofudFL.plugIns will contain the
list of available plug-in modules that follow the proper naming convention. This does
not test the validity of the plug-in!

30

Function udFLZeroStructure(udFL)

STRUCT udStFiLrStandardStructure &udFL

udFL.mimetype = ""

udFL.extensions = ""

udFL.itemsType = 0

udFL.itemsDim[0] = 0

udFL.itemsDim[1] = 0

udFL.itemsDim[2] = 0

udFL.itemsDim[3] = 0

udFL.procModes = "Auto;"

udFL.setNames = 0

udFL.eventCode = 0

udFL.userCtrl = 0

udFL.userData = ""

udFL.reportCtrl = 0

udFL.plugIns = FunctionList("udFLPlugIn*",";","KIND:6")

udFL.namePrefix = "" udFL.pathStr = ""

udFL.fileList = ""

udFL.returnCtrl = 0

udFL.toFolder = "root:"

udFL.itemsCount = 0

udFL.itemsList = ""

udFL.errCode = 0

udFL.errMsg = ""

end

5.2 Assuring the File Paths

Function udFLAssureFilePaths(udFL)

The command above will assure thatudFL.pathStr and udFL.fileList have
proper values. It returns a -1 when they are incorrectly formated. Otherwise, it re-
turns the number of files to be loaded. It returns a blank string in udFL.pathStr when

31

multiple files are to be loaded from multiple directories.

5.3 Moving To and Creating New Data Folders

Function udFLSetDataFolder(udFL,[setit])

The command above will move to a specific folder defined in theudFL.toFolder

directive. If the folder does not exist, the function creates it. The optional variable
parametersetit will determine whether to stay in the specified folder or return to the
folder of origin. Whensetit = 0, the function returns to the folder of origin. This is
equivalent to creating a new data folder but not moving into it. Whensetit = 1, the
function also moves to the new or existing folder. The default is setit = 1, so a call to
udFLSetDataFolder(udFL) will create (as needed) the new data folder and move to it
directly while a call toudFLSetDataFolder(udFL,0) will create (as needed) the new
data folder but will not change folder locations.

5.4 Setting Error Codes and Messages

Function udFLSetError(udFL,errStr,errCode)

This command will set theudFL.errMsg and udFL.errCode parameters to the
string errStr and the numeric parametererrCode, respectively. It always returns
ZERO.

5.5 Handling Error Codes and Messages

Function udFLHandleError(udFL,errStr,errCode)

WhenudFL.errCode = -1, this command will put up aDoAlert 0 dialog box with
the contents ofudFL.errMsg and will then Abort the routine. WhenudFL.errCode
= 0, this command will print a WARNING with the contents ofudFL.errMsg in the
history window.

32

5.6 Querying the Processing Modes

Function/S udFLQueryprocModes(fp)

The command above will return a string list of the available processing modes for
the loader function namedfp (a string input).

5.7 Querying the Renaming Options

Function/S udFLQuerysetNames(fp)

The command above will return a string list of renaming options in a manner that
can be used in a popup menu. Those modes that are unavailable will be disabled.

The string with all options enabled will read:"Auto;Filename;File Header Info;Prefix+Number;Manually;"

5.8 Initializing a Loader

Function/S udFLInitializeLoader(udFL,fp)

The command above will inialize the file loader namedfp (a string input) using the
standard structureudFL.

5.9 Running a Loader

Function/S udFLRunLoader(udFL,fp)

The command above will run the file loader namedfp (a string input) using the
standard structureudFL.

33

5.10 Listing Available Loaders

Function/S udFLLoaderList(how)

The command above will return a string list of the available standardized file loaders.
The parameterhow determines the format of the string list. Whenhow = 1, the function
names include the standard prefixudStFiLr. Whenhow = 0, the loader function names
have the prefixes removed. The former case is useful for running the function, and the
latter for showing the function in a popup menu.

5.11 Renaming Inputs

Function/S udFLRenameInput(cList,prefix)

The command above will rename all items in the string listcList using the string
in prefix and a numeric value. This function tries intelligently to decipher the next
name in the sequence. It also prefixes strings withS_ and variables withV_ (to avoid
conflicts). This function uses an additional data folder directory function that is kept
static to the procedures (and is therefore inaccessible to outside calls).

6 A Simple Standardized File Loader Panel

The Igor Pro procedure file to handle “standardized” file loaders is provided as a benefit
to users and programmers alike. It is a very basic design and should be simple enough
to understand that no detailed explanation is provided here.

Install the procedure file, open Igor Pro, and select Macros:Compile (unless Auto-
Compile mode is on, whereby this is not needed). The Macros menu should have the
command for the simple panel demo. This will generate the panel below.

34

Some of the file loaders that appear are included with the demoas a proof-of-
concept.

Clicking on the Test button prints out the entire contents ofudFL.
Clicking on the Load button runs the chosen file loader.
To test a “standardized” file loader, first close the existingsimple panel. Then install

the procedure file for a standardized file loader according toits instructions and recom-
pile in Igor Pro. Now, select the panel demo under the Macros menu, and the installed
file loader should appear in the list of file loaders. You can test various inputs (file list,
processing mode, user data, and the value for toFolder) by using the panel.

7 Acknowledgments

Thanks Wavemetrics! The ability to use STRUCTURES and FuncRef make this entire
process much easier.

8 Contact

Suggestions and comments should be posted at the Igor Exchange Web site. I will be
using it exclusively to track this project.

9 Legalize

This software is free to use as per the terms of any other publicly released software.
Enjoy!

35

	Summary
	Background
	Loading Data Using Igor Pro Menus
	Loading Data Using Igor Pro Commands
	Loading Data Using User Defined File Loaders
	Loading Data Using Standard User Defined File Loaders

	Setup
	Requirements
	Package Contents
	Installation

	A Standardized File Loader
	Format
	Function Call, Name, and Parameters
	Structure Name
	Structure Contents

	General Use
	Programming Applications
	Using Templates for Basic Development
	Reading Input Parameters to Find Files
	Using Input Parameters to Refine Loader Processing
	Using Return Parameters to Assure Standard Behavior

	Some Standardized File Loader Processing Functions
	Zeroing the Standard Structure
	Assuring the File Paths
	Moving To and Creating New Data Folders
	Setting Error Codes and Messages
	Handling Error Codes and Messages
	Querying the Processing Modes
	Querying the Renaming Options
	Initializing a Loader
	Running a Loader
	Listing Available Loaders
	Renaming Inputs

	A Simple Standardized File Loader Panel
	Acknowledgments
	Contact
	Legalize

