Standards for User Defined File Loaders
A Working Proposal

Version 2.0¢eV)

J. J. Weimer
July 8, 2008

Standardized
File
Data Loader
File A
\ »O

" C
Data File B Sl V" Igor Pro

Interface
—
File C
Distribution Details

Developed with Igor Pro Version: 6.0.23

Procedure Files: udFLStandardFunctions and udFLStaSttaicture
Demos: none

Experiments: none XOPS: none Help Files: none
Requires Packages: none

Abstract

This is a proposal to define standards for how user definecbflgdrs are designed to
interface with other user defined packages in Igor Pro.

The proposed standards based on defining proper namingrd@mn&and on using
a STRUCTURE to carry information (processing parameteesyveen the file loader
and the routines that interact with it.

Conventions and standards are proposed, the file loadetwsieus defined, and a
basic application is presented in this document. A simpleepes also provided with
the package distribution for users to test developmenttahttardized” file loaders.

This document was generated usiAgeX

Contents

1 Summary

2 Background
2.1 LoadingDataUsinglgorProMenus.
2.2 Loading DataUsinglgorProCommands.
2.3 Loading Data Using User Defined File Loaders
2.4 Loading Data Using Standard User Defined File Loaders.

3 Setup
3.1 ReqUIremMents e e e
3.2 PackageContents. e
3.3 Installation

4 A Standardized File Loader
4.1 Format e e e e
4.1.1 Function Call, Name, and Parameters
4.1.2 Structure Name e e
4.1.3 StructureContents e
4.2 GeneralUse e e e
4.3 Programming Applications

l\)|\)|_\|_‘

w wWN

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16

4.3.1 Using Templates for Basic Development.
4.3.2 Reading Input ParameterstoFindFiles
4.3.3 ProcessingWhatisLoaded
4.3.4 Using Input Parameters to Refine Loading or Processing
4.3.5 Using Return Parameters to Assure Standard Behavior

Some Standardized File Loader Processing Functions
Zeroing the Standard Structure. L
Assuringthe FilePaths

Moving To and Creating New Data Folders.
Setting ErrorCodes and Messages v v v v v i e e
Handling Error Codesand Messages v v v v vt v i i i e

Queryingthe LoadingModes. e

Querying the Processing Modes .
Querying the Renaming Options.

Initializinga Loader e
Runningaloader
Listing Available Loaders

Pulling InformationfromUserData

CheckingforaPlug-In.
Renaming Inputs.
Gettingalistof Folders.

Getting a Folder Directory Listing

Acknowledgments

7 Contact

8 Legalize

39

39

1 Summary

File loaders are an integral part of Igor Pro. They provideag to input data from files
into Igor Pro. A wide variety of data file formats exist outsiof Igor Pro. No one file
loader exists in Igor Pro to handle them all. Igor Pro prosidd-ile Loader panel to
input a number of common formats. Loaders for file formatsiolet of the common
ones are generally developed by users of Igor Pro specifieeiorieeds.

Two potential shortfalls exist in the current framework @&vdlopment for user-
defined file loaders. First, new users of Igor Pro are not aveayare of the existence
of file loaders other than those built-in to Igor Pro. Secgnellen when the existence of
a specific user-defined file loader is well published and isswisll-documented, it is at
best “different” in its interaction than any other file loa@dad at worst “idiosyncratic”
in how it is to be used. These problems can be a frustrationdarusers and seasoned
programmers alike.

This document generates a proposed STANDARD for how useratifile loaders
are to interact with other routines. It outlines a STRUCTU&TE set of FUNCTIONS
that provide a basis for programmers to make their file lcadecept a uniform set of
commands and return a uniform set of information.

2 Background

Files can generally be loaded into Igor Pro in on of three ways

2.1 Loading Data Using Igor Pro Menus

The top level method to load files is using the Load Waves metiwm and associ-
ated sub-menus. These generally provide a dialog box arfacte panel. Options are
available to select the format of the files.

2.2 Loading Data Using Igor Pro Commands

A number of operations are provided in the Igor Pro commanduage to read files.
The most common are outlined below. In writing a user-defiiledoader within Igor
Pro, you will likely use one or more of these commands as gamuwr file loader.

Open
This command can open a file, save a file, or just verify thateaidilavailable to be
opened. A related commandigenNotebook. Any file that is opened should be closed

1

using theClose command.

FBinRead
This command is used to read data from a file in a byte-wise sralf@®ommands that
are associated with controlling the reading B®etPos andFStatus.

FReadLine
This command is used to read binary data from a file. Commdraisate associated
with controlling the reading arESetPos andFStatus.

LoadData
This command is used to read data from a different Igor Premxg@nt into the current
Igor Pro experiment or from a file-system folder containiggriPro type data.

2.3 Loading Data Using User Defined File Loaders

A wide range of user-designed file loaders have been cregtdlcommunity of users

of Igor Pro. Most are available at no additional cost. Onértis problem is, a central

repository of file loaders for Igor Pro does not (yet) exishagher problem is, because
no standard exists for how a file loader should be designedshaodld operate, each
file loader can be expected to be different from all othersm&dile loaders contain

well-designed panels or dialogs to guide the user. Othergeguire some external
programming.

2.4 Loading Data Using Standard User Defined File Loaders

The purpose of this document is to put forward a standardigarafor how user defined
file loaders should work. It advances a sequence of propesarovides a basic
example of how such a standard can be used to create a sitgfiace for a user to
access all “standardized” file loaders.

3 Setup

3.1 Requirements

The procedures with this distribution have only been testedgor Pro 6.03 and are
defined with a minimum requirement of Igor Pro 6.03. Anyoneowlas success in
using the procedures in this distribution under earliesizars of Igor Pro, please report
such.

3.2 Package Contents

The procedure is provided in a ZIP archive. Unpacking théiaecwill reveal the
primary (root) folder udStFiLrsStandards. The directarycture inside this folder is
shown below (the main directory is named differently in ihigge).

Maime
b udFL-Structure
b documentation ﬂ
k' code
udFLStandardStructure.ipf |,
udFIjtandardFunctinns.ipf -
| S 4 l»

documentation
This folder contains this document and thgXsource code to generate it. The specific
jjwcore header file to theAlpXsource code can be provided on request.

code
This folder contains the two files for the standard.

udFLStandardFunctions.ipf

This procedure file contains functions that may be used asgbax “standard” file
loader. It is basically provided as a benefit for developera avay to help avoid re-
peating the coding of what might be considered to be coretiiume for a file loader,
especially in how it interacts with the standard loadercttrre defined in this document.

udFLStandardStructure.ipf
This procedure file contains the proposed standard steuctur

3.3 Installation

The directoryudStandardizedFileLoaders MUST be installed in ONLY one way.
Move or copy the entire directory into thiiser Procedures directory of your local
installation of Igor Pro. You must do this installation befo/ou open any experiment
that is to use the demo of the Simple Standard Loader Panel.

3

You can rename the directory after it is installed intiser Procedures directory
(although this is not recommended!). You can also instdlir “standardized” file
loaders into this directory as a way of keeping track of th#éns (s recommended).

4 A Standardized File Loader

4.1 Format

The basic workings of the “standard” structure for prograngpurposes is illustrated
by the simple coding for a “standardized” file loader thatiewn below.

Static Function udFLIinitStructure(udFL)
initialize the structure

Function udStFiLrMYLOADER (udFL)
do whatever is required by MYLOADER to input the file and stioeedata

The devil is in the details, though. To have proper operatibfistandardized”
functions requires that certain conventions be followedmvtieveloping them and when
programming to use them.

4.1.1 Function Call, Name, and Parameters

The first conventions provide for consistent access to taéddder function.

Proposal 1

The file loader shall be accessed via a call of the feamction XXX(YYY),
whereXXX is a nhame that is to be defined (by Proposal 2) @nd are the
parameters to be defined (by Proposal 3).

The second convention provides a consistent way to get the oéall standardized
file loaders in use at any time.

Proposal 2
The name of the file loader functiatxX shall be prefixed bydStFilLr fol-
lowed by the name of the file loader (with or without capitaldes).

When a user defined file loader conforms to the above converaioall to the Igor
Pro string function FunctionList(*udStFikt,”;”,“KIND:6") will return a separated list
of all standardized file loader functions currently acdasesin a given experiment. The
prefix “udStFiLr” that appears on each loader name can bepstd via further process-

ing as needed.
Note that, just because afile loader appears in a list of atitediles when searched

using the method shown above does not mean it will work ptgp&he third conven-
tion therefore provides a consistent way to interact withtirees that make function

calls to the loader.

Proposal 3
The function itself shall take one parameter, a pointer ® standard file

loader structure, as

Function udStFiLrMYLOADER(sP)
STRUCT SSS &sP

The use otP to define the abbreviation for (pointer to) the structurgoganal.
The namessS of the STRUCT is to be defined (by Proposal 4)

4.1.2 Structure Name

In order to be able to use the file loader structure for anydielér, it must be accessed
by the same name.

Proposal 4
The namesss of the structure shall bedFLStandardStructure as an nota-

tion for User-Defined File Loader Standard Structure. A ss@gd abbrevia-
tion for the pointersP to the structure isdFL (as used throughout this docu

ment).

Examples

Accepting the above four proposals as conventions, thevinig examples show “stan-
dardized” file loaders:

Function udStFiLrTabDelimitedXY (abCD)
STRUCT udFLStandardStructure &abCD

Function udStFiLrXYZa(udFL)
STRUCT udFLStandardStructure &udFL

By comparison, the following examples show non-standadifie loaders:
Function udStFiLrTabDelimitedXY (abCD,X)
STRUCT udFLStandardStructure &abCD

variable X

Function MyLoader (udFL)
STRUCT udFLStandardStructure &udFL

Static Function udStFiLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

4.1.3 Structure Contents

The remaining conventions deal with the internal operadicamstandardized file loader.
In discussing them below, the assumption is that, as a pmoge, you are already
familiar with how to use STRUCTURES in Igor Pro. The best eglarcase is when
you have written control procedures for panel controls amgehwvorked through the
examples to understand when structure parameters ard€rg’sin a function and when
they disappear. If you are not to this point, then you may mathe ready to write a
"standardized” file loader. You may however find encouragenm®m the somewhat
tutorial approach the following discussion tries to take.

First, the standard structutelStFiLrStandardStructure iS a place to store pa-
rameters needed by the file loader to interact consistentlyitg “surroundings” (the

6

calling functions). The structure is not a place where datanfthe data files are stored
(they are stored directly into Igor Pro folders for example)

The contents of the structure should be established to geazansistent function-
ality and optimal utility. This interest establishes theust of the next proposal and its
sub-proposals.

Proposal 5
The udStFiLrStandardStructure shall contain parameters covering fou
types of information, as presented below.

=

Descriptors
The parameters in this section describe the “charactetiefile loader.

Inputs
The parameters in this section provide a way for the programoinput com-
mands to control what the file loader is to do.

Localizers
The parameters in this section define where the file loaderapérate when it
does its job.

Returns
The parameters in this section define the success or faifutedile loader
when it completes its job.

Each type of information in the standard file structure ise@ocbvered by defined
parameters, as presented on the next few pages. In thosewhsee the parameter
definition is UNDEFINED, further investigation is neededgiablish a proper standard
or standards for the parameter.

Proposal 5A

The following parameters shall be specifically containethiwithe Descrip-
tors section of the file loader:

string mimetype

This string defines thenimetypeof files that can be loaded by the loader. A
example is “TEXT” or “IGOR”.

string extensions

This string (list) defines the file extensions that can be ddaoly the loader.
Itis a semi-colon separated list of all file extensions. Aaraple is “.txt;.dat;”.

int32 itemsType

This numeric parameter defines the type of data that aredshyréhe loader.
It is a bit-wise comparative number following the convenso

3

: globals (string or variable)

: keyword-list (using "=" and ;")
: wave

: matrix

: image

: notebook

: procedure file

others: user defined

OO, WNPFP O

When a loader stores more than one type of data simultandbelyesultant
value foritemsType shall be a BIT-wise addition of values. For example,
loader that stores globals and images simultaneously waaid ani temType
of 1 + 16 = 17, while a loader that stored waves and a noteboakdt@ve an
itemType oOf 4 + 32 = 36. When a loader stores more than one type of d
and the type depends on processing modej teeType may be set depending
on processing mode and user control, as discussed lates indbument.

a

ata,

Proposal 5A (continued)
int32 itemsDim[4]

This numeric parameters defines the “dimensionality” of ltexled data. It
is a positive or negative integer number in an array storagedepends on
itemsType following the conventions:

itemsType = 1 (global)
itemsDim[0] = 1: variable
itemsDim[0] = 2: string

itemsType = 2 (keyword-list)
itemsDim[0] = 1: list uses "="
itemsDim[0] = 2: list uses ":"

itemsType = 4 (wave)
itemsDim[0] = -1: unscaled numeric wave
itemsDim[0] = 1: scaled numeric wave
itemsDim[0] = -2: unscaled text wave
itemsDim[0] = 2: scaled text wave

itemsType = 8 (matrix)
usingN to indicate the matrix dimension
N = 0: rows;N = 1: columnsN = 2: layers;N = 3: chunks
itemsDim[N] = -1: unscaled numeric
itemsDim[N] = 1: scaled numeric
itemsDim[N] = -2: unscaled text
itemsDim[N] = 2: scaled text

itemsType = 16 (image) — TO BE DEFINED!
itemsType = 32 (hotebook)
itemsDim[0] = -1: unformatted

itemsDim[0] = 1: formatted

itemsType = 64 (procedure) — TO BE DEFINED!

Proposal 5A (continued)
string loadModes

This string list defines the options available to a user tdrobthe file loader.
The first mode shall be “Auto”. All other modes are establishy the
programmer. One example dbadModes for a file loader with four loading
modes is “Auto;Via Dialog Box;From Previous Directory;Maaily;".

string procModes

This string list defines the options available to a user tdrebhow the data is
processed by the file loader after it is loaded. This stringlmaempty when
no processing modes are provided by the loader. It can alsaltéed to by
plug-ins to the file loader.

int32 setNames

This variable is both a Descriptor and an Input. As a Desarjpt defines
whether the loader can rename the parameters that it retaidg s variables,
waves, or matrices). As an input, it directs the loader tanesthe parameters
in a certain way. This variable is a BIT-wise value with comt¥ens below.

BIT
. loader sets the input names (the user has no control)
: user can (re)name input according to file names (+ number)
: loader can (re)name input according to a defined file header
: user can (re)Name input according to a prefix (+ number)
: user can manually (re)name each input (via a dialog)
: loader can define its own way of renaming the input
(see below undetserData)

aa b~ wdNEF O

10

Proposal 5A (continued)

When a given (re)naming option is supported in any mode tleby
udFL.userCtrl, that mode should typically be supported in all modes (wi
perhaps the exception of thauto" mode). All loaders should support renam
ing with BIT = O (ie,udFL.setNames = 1). This is essentially a mode whers
the loader pre-defines the input names. When two or more riegaoptions
are supported, the return value should be the BIT-wise sutimeomodes. For
example, a loader that supports file name and manual renamilinggturn a
value of (1 + 2 + 16) = 19 foudFL. setNames.

D

11

Proposal 5B

The following parameters shall be specifically containethiwi the Inputs
section of the file loader:

int32 eventCode

This numeric parameter defines the “action” that is evokirgyfile loader. A
value ofeventCode = -1 shall mean, a request has been made to kill the
loader package (remove it from the current Igor Pro expartineAll other

eventCodes are for the programmer to define.

int32 userLCtrl

This numeric parameter is the control variable for how the fidader will
LOAD a file. All positive values ofuserLCtrl map directly onto the index
value of the mode in th@oadModes list, starting from a count of 1. Two
specialuserLCtrl values shall also apply.

Value
-1: initialize the loader
0: query the loader for its Descriptors

A file loader withloadModes = “Auto;Via Dialog Box;From Previous Direc-
tory;Manual;" would use mode “Via Dialog Box” whetserLCtrl = 2.

file

12

Proposal 5B (continued)
int32 userPCtrl

This numeric parameter is the control variable for how the fidader will
PROCESS data once they have been loaded. All positive vafugsrPCtrl
map directly onto the index value of the mode in th®cModes list, starting
from a count of 1. Two specialserPCtrl values shall also apply.

Value
-1: initialize the loader
0: query the loader for its Descriptors

A file loader with procModes = “Invert Scaling;Compress Scaling;Expan
Scaling;" would use mode “Invert Scaling” wheserPCtrl = 1.

string userData

This string parameter is an option to further refine a loadingrocessing
mode in the file loader.

int32 reportCtrl

This numeric parameter provides a way to define how the |loagberts on its
activities. Three specific modes shall be reserved.

Value

-1: silent
0: normal
1: verbose
2: debug

The programmer is free to define the level of reporting pregithy the file
loader in each case.

[oN

13

Proposal 5B (continued)
string pluglns

This string list is an option to allow a programmer to enhaocsupplement
the loader through “plug-in” functions. A plug-in functiasone that accepts
the udStFiLrStandardStructure and uses its parameters to speed up
enhance manipulations within the loader. A prime exampléisnake a
file loader use a certain XOP routine that does somethingdtiegrwise is
hard-coded into the loader. Providing a loader that is awérde XOP is
equivalent to making it “aware” of the XOP by adding the fuactname to a
listin plugIns.

int32 setNames
This parameter is both a Descriptor and an Input. As an iripdirects the
loader to (re)name the input according to the conventionsrgpreviously in
the Descriptors section.

string namePrefix

This string is used to define the prefix for (re)naming inpuluga when
udFL.setNames = 8.

14

or

Proposal 5C

The following four parameters shall be specifically corgdinwithin the
Localizers section of the file loader:

string pathStr

This establishes the path to the directory containing tleésfilto be loaded.
The string uses the Igor Pro convention of path names bejparated by ™"
(colons).

string filelist

This establishes the list of files to be loaded. The list camtaio the full
path to the file(s), a partial path to each file(s), or the filenegs) without
extension(s), as discussed later in this document.

int32 returnCtrl

This numeric value controls additional aspects of how tlaléw reports its
progress. In particular, this value controls whether Igar global parameters
such as S_value and V_flag, that are normally created dugogRroOpen
processes, are also to be created by the file loader. Twdispedues shall be
reserved.

Value
0: normal (all return information is in the file loader struict)
1: enhanced (also create additional “global” parameters)

string toFolder

This string defines the Igor Pro folder where the data are tsttred. It shall
always be defined relative to theot level.

15

Proposal 5D

The following four parameters shall be specifically congairnwithin the
Returns section of the file loader:

int32 itemsCount
This numeric value provides the total number of items loaded
STRUCT itemsList itLst

This sub-STRUCTURE defines a way to store the names of the ifglobals,
waves,...) that have been loaded. It contains the following items:

STRUCTURE itemsList
string GLOBALS
string LISTS
string WAVES
string MATRICES
string IMAGES
string NOTEBOOKS
string PROCEDURES

ENDSTRUCTURE

Each of the above items is to be a string list (separated Qydf'what has
been loaded.

int32 errCode

This numeric value defines whether any error occurred duhiegxecution of
the file loader. Two return values shall be reserved.

Value
0: any error is only a warning
-1: any error is considered fatal (and should likely leadrt@bort)

16

Proposal 5D (continued)
string errMsg

This string (list) returns any error messages generatetefjle loader during

processing. It shall accumulate warnings sequentiallyerd@lore, warnings
can be dumped to a report. By comparison, any fatal error agessshall

overwrite any prior contents, with the understanding thaeytare designed to
be handled by an immediabeAlert followed by anAbort.

In addition to the above parameters within the structure file loader itself
shall return a 0 when it has executed properly and a -1 whee sorar (warn-
ing or fatal) has occurred.

4.2 General Use

As a general user of Igor Pro, you will typically have no diraderaction with the
Structure procedure file that is part of this package distidim. Your only need is to
maintain an updated copy of the file (and its companion Fanstfile) in your Igor Pro
distribution. All procedures that conform to the standgsdsposed in this document
will then be accessible to you, ideally through “plug-andd” interfaces, such as the
one provided by the Simple File Loader Panel Demo.

4.3 Programming Applications
4.3.1 Using Templates for Basic Development

A basic application of the file loader standard structurtstrated in the two templates
below. These templates are written in Igor Pro, they are mittem as C/C++ for XOPs.

Having someone provide such templates based would be wett@s an addition to
this document.

17

Initialization
The first function is the initialization routine for the load An example is below.

Static Function udFLInitStructure(udFL)
STRUCT udFLStandardStructure &udFL

udFLZeroStructure(udFL) // zero the structure

udFL.mimetype = "..." // set the mimetype
udFL.extensions = "..." // set the extensions
udFL.itemsType = ... // set the itemType
udFL.itemsDim[0] = ... // set the itemsDim
udFL.loadModes = "Auto;..." // set the loadModes
udFL.procModes = "Scale by First;..." // set the procModes
if (udFL.userCtrl == -1)

print udFL // show descriptors in history
endif
return O

end

The function call toadFLZeroStructure (udFL) assures that all parameters in the
file loader standard structure are properly defined (as mquldater in this document).
The remaining lines define the character of your file loadais Thformation is passed
back to the primary calling routine via your loader function

Note that your initialization routine is defined as a STATEtion so that it is
local to your procedure and only accessed by going throughfjle loader function.

18

File Loader
The second function is the entry point to your loader functié basic template for a
“standardized” file loader is shown below.

Function udStFiLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

if (udFL.eventCode==-1)
. procedure file is being killed
. do whatever is needed to clean up
return 0
endif

switch(udFL.userLCtrl)
case -1:
case O:
udFLInitStructure (udFL)
break
case 1:
. auto-load mode
. assume all parameters are defined in structure
. do auto-processing
break
case N:
. mode N
. do whatever processing
break

endswitch

return O
end

Each part of the template is presented in turn below.

19

Clean-up

The first portion of the above template provides a standagdtavenake your file loader
aware of an event that is going to kill the procedure windomaiming your file loader.

You can thereby write specific “clean-up” procedures witheif ... endif portion

of the loader. Theeturn 0 command assures that no further processing is done by the
loader after all the clean-up steps have completed.

In providing a standarddFL.eventCode = -1 as a method to notify the file loader,
the assumption is, any routine that attempts to kill your Ifleder procedure should
passudFL.eventCode = -1 to it first. This may not always occur. One way to assure
this may be through the use of Hook functions within your pawre itself. Further
clarification of this process remains to be established.

Initialize

The initialization of the file loader occurs WdFL.userLCtrl = -1 or O when the file

loader is invoked. In the first case, the initialization idldaved by a report of the

Descriptors of the file loader. In the example initializatimutine, this is done by
printing the entire structure to the history window. Furtpessible refinements to this
are discussed later in this document. WheRL . userLCtrl = 0, the file loader only

initializes itself, nominally to its base set of Descriggor

Auto-Process

The auto-process mode of the file loader occursiffL..userLCtrl = 1 when the file
loader is invoked. A primary assumption is, all parameterthé Inputs and Localizers
sections oudFL are pre-defined (by the user in some way) when auto-proceds R0
invoked. Your file loader should therefore not need to uskdiboxes or prompts for
user input in the auto-load mode! It may (and indeed shoekt)that all parameters are
indeed properly set and return an approprigteL . errCode andudF1.errMsg if they
are not (as discussed later in this document).

Other Process Modes

Other processing modes are establishedd®L. . userLCtrl values greater than 1. The
value ofudFL.userLCtrl is to map exactly with the index value of the “mode” string

in udFL.loadModes. As an example, the table below shows how processing modes
and user control values map for a file loader with three logdiodes. The first menu
selectable mode is “Auto” by definition. The second modeg*“Belect”, is run when
udFL.userLCtrl = 2. The third mode, “Manual’, is run wheniFL.userLCtrl = 3.

20

User Control Mode Notes

-1 Initialize and Query typically not shown in a menu selewcti

0 Query (only) typically not shown in a menu selection
1 Auto first menu selection for all file loaders

2 Pre-Select a specific mode for this file loader

3 Manual a specific mode for this file loader

For the above table, to create the proper sequence forngladFL.loadModes and
udFL.userLCtrl, the value ofudFL.loadModes would be initialized as “Auto;Pre-
Select;Manual;” (a string list).

4.3.2 Reading Input Parameters to Find Files

The use of input parametetsFL . eventCode andudFL.userLCtrl have been illus-
trated in the example above. Two remaining parameters seatal to the “Auto” mode
of processing. They aredFL.pathStr andudFL.fileList in the Localizers section
of the file loader standard structure. These two paramegfirsedwhere the files are lo-
cated (and are therefore considered as localizers, althihay also are required input
parameters in “Auto” mode).

Your file loader can use the two parameters in any way you wanine general
ways are proposed below for further consideration.

Loading a Single File

When the “Auto” mode of loading is designed to load only a Enijje, a recom-
mended convention is thaidFL.pathStr will contain the full path to the file and
udFL.fileList will contain the filename (with extension). In this case, dile
loader could create a temporary data Path, load the file, lzend delete the tempo-
rary data path. An example code to do this is shown below. ilndabde, the function
udFLAssureFilePaths (udFL) is a function provided in the standard set, as discussed
later in this document.

21

case 1:
variable ic, nc = udFLAssureFilePaths(udFL), refNum
string fname
switch(nc)
case -1:
. handle as error
break
case 1:
fname = StringFromList(0,udFL.fileList)
NewPath/0/Q tmpFPath $udFL.pathStr
Open/R/Z=1/P=tmpFPath refNum as fname
if (V_flag!=0)
Close refNum
KillPath/Z tmpPath
. process the error that occurred
endif
Close refNum
. process the data
KillPath/Z tmpPath
break
default: // multiple files (see below)

endswitch
break

Loading Multiple Files

The “Auto” mode of loading is actually best designed wherait tbad many files of the
same format, potentially from multiple directories. Whdrfikes are in the same direc-
tory, udFL.pathStr should contain the path andiFL.fileList just the file names.
When the files are in multiple directoriesiFL.pathStr is to be an empty string (*”)
andudFL.fileList is to contain the list of files with their full path names, inding
extensions. This convention is assured by the funattifLAssureFilePaths (udFL)
(as discussed later in this document). An example code tdl@ame of the cases is
shown below.

22

case 1:

switch(nc)
. handle error and single file cases
default:
if (strlen(udFL.pathStr)!=0)
. all files are in the same directory
. loop on fname while in same path
else
do
fname = StringFromList(ic,udFL.fileList)
if (strlen(fname) == 0)
break
endif
Open/R/Z=1 refNum as fname
if (V_flag!=0)
Close refNum
. process the error that occurred
endif
. process the data
while(1)
endif
break
endswitch
break

Handling Empty File Lists

You may wish to allow a user the option to select file(s) fodiog by coding file se-
lection routineswithin your loader Of course, this MUST not happen in the “Auto”

processing portion of your loader. You may decide that, aptgndFL.fileList isto
be taken as a directive by the user to open a file selectiooglidlgain, this MAY NOT
happen whemdFL.userLCtrl = 1. In this case, an empty value ®dFL.fileList

is to be handled as an error from the user input (this will bsused by a call to

udFLAssureFilePaths (udFL).
In those cases where you do allow the user to select files loyfispselection dialogs
or prompts within your file loader, a good practice is to pat fite selections properly

23

into udFL.pathStr andudFL.filelList following the conventions proposed above
for loading a single file or loading multiple files. When yoaatier also processes the
incoming data, this can in fact make your code easier to eees the example below
illustrates.

switch(udFL.userLCtrl)
case 1:
break
case 2:
. allow user to select files list
. store file names in udFL.filelList
break
endswitch
. load file(s) in udFL.filelList

4.3.3 Processing What is Loaded

A file loader may also process what it loads. The purposedsf..userPCtrl and
udFL.procModes is to allow the modes to be defined by the programmer and select
by the user.

Defining Options for Processing

The processing options for a loader are defined in a strinolisiFL . procModes. The

user “selects” a particular mode by inputting the corresiiogpindex toudFL . userPCtrl.
The example below shows a possible sequence of processithgsmo

24

in the initilization/query portion
udFL.procModes = ‘‘Scale by First;Scale as Pairs;’’

...1in the loader routine
switch(udFL.userPCtrl)

case 1:

. process using the ‘‘Scale by First’’ method
break
case 2:

. process using the ‘‘Scale as Pairs’’ method
break
endswitch

When to Process
In general, processing should occur after the data havelbaded. The example below
shows the recommended flow from loading to processing.

switch(udFL.userLCtrl)
. load using the desired method
endswitch

switch(udFL.userPCtrl)
. process using the desired method
endswitch

4.3.4 Using Input Parameters to Refine Loading or Processing

The parameters in the Inputs sectionudfL are to by defined by routines outside of
your file loader (how this can be done in a “standard” way ig pathe discussion in
the section on the standardized file loader panel later ;xdbcument). You should
NOT change them inside your file loader. You should use thefavaisches” to define
what your file loader does.

The use ofudFL.eventCode andudFL.userLCtrl have been illustrated in the
preceding section. Examples below show how other inputrpaters can be used to
further refine what your file loader does.

25

Defining Sub-modes

The stringudFL.userData provides one way of having sub-modes for any “main”
loading or processing mode. This is best illustrated by gammming example. In the
section on the next page, only that part of the file loaderhbatles a mode when the
valueudFL.userLCtrl = 2 is shown.

case 2: // myloader does "pre-processing” in this mode
if (strlen(udFL.userData)==0)
. no special sub-mode pre-processing is requested
. do all pre-processing
break
endif
strswitch(udFL.userData)
case "preformat":
. only preformat mode is requested
break
case "overlay":
. only overlay mode is requested
break
default:
. the sub-mode string is not recognized
. handle this as an error
return -1
endswitch
break

The sub-mode strings required from the user for your file éoadn be as simple
or as complex as you want. Verbose types of strings, as indtti@ele above, are one
example. Requiring strings that are more UNIX-like, for e “-p” for “preformat”
and “-0” for overlay, is another example. You may even regjumumerical values (as
strings) usingidFL . userData and use spaces as separators to enable “multiple” or “se-
quential” sub-mode processing. Perhaps the only rule alming theudFL . userData
string parameter is, the string requirediiFL . userData at any pointin your file loader
should not be required to contain special characters sueloas.

Note also, you should be certain to handle cases when thé wdplU.userData
does not equal any of your desired selections. The exampleahows, this is handled
by thedefault: case of the string switch selection and is processed as angser

26

error.

Finally, the primary assumption wheidFL.userCtrl = 1 is, your file loader will
operate in “Auto” process mode. In particular, this meansspecial sub-modes are to
be selectable. Therefore, whedFL.userCtrl = 1, any string value that is contained
in udFL.userData should be ignored within that portion of your file loader!

Localizing Processing

The objective of many file loaders is to store data in Igor Rrohsit it can be further
processed. This is certainly true for global, keyword-kgtve, matrix, and image data.
In such cases, the strong recommendation within the Igoc&ramunity is to establish
and use Igor Pro data folders as a place to store the data.

The discussion in this portion of the document assumes thatas a programming,
are familar with creating, setting, and changing data fdloleations by appropriate Igor
Pro coding within your file loader.

The file loader structure offers the parameié¥L.. toFolder that is set by the user
as a way to direct any file loader to a specific location wheMUIST store the data.
This directive is an IMPERATIVE, not an optional directive. other words, when the
parametendFL. toFolder IS not empty, your file loader is being commanded to change
to the folder specified by the string and to load data only ih&t specific folder.

The value inudFL. toFolder is always a full folder path relative to the root folder.
An empty value means, data are to be stored at the root faudel. |

A standard functiorudFLSetDataFolder (udFL, [setit]) has been provided to
allow your loader to create and change to a specific foldezdas the value pased in
udFL.toFolder. Its use is illustrated in the example on the next page.

Your file loader MUST also return to the original data foldefdre the loader ex-
its its processing. In general, a recommended way to askateyou always return
to the original data folder is to include proper coding ftDataFolder (1) and
SetDataFolder, as is also shown in the example on the next page.

27

Function udStFilLrMyLoader (udFL)
STRUCT udFLStandardStructure &udFL

string cdf = GetDataFolder(1)

if (udFL.eventCode==-1)
SetDataFolder $cdf // resetjustin case the data folder was changed
return O

endif

udFLSetDataFolder (udFL)

switch(udFL.userCtrl)

SetDataFolder $cdf
return -1
endswitch

SetDataFolder $cdf
return O
end

Within the confines of the above directives faiFL . toFolder, your file loader is
otherwise free to create sub-folders in any of its loadingdes”, including the “Auto”
mode. At the end, your file loader will inform the user of anidfers created by return-
ing proper values in thedFL.itemsList parameter, as discussed later in this docu-
ment.

Reporting Progress

The file loader standard structure provides one parametifioe the extent of report-
ing requested by the user during processing. The paraméfer. reportCtrl can
be used to define three (or more) “modes” of reporting infdioma In Silent mode,
the processing proceeds with no reports. In Normal moddptuer reports on certain
stages of processing. Finally, in Verbose mode, the loagfarts frequently through-
out. The level of reporting in each mode is left entirely te grogrammer. An example

28

of how this can be used to document the progress afjpee command is shown in the
code below.

switch(udFL.reportCtrl)
case -1:
Open/R/Z=1/Q ...
break
case O:
Open/R/Z=1 ...
break
case 1:
Open/R/Z=1 ...
print "Just opened the file for reading ...
break
endswitch

Accessing Plug-Ins

Plug-ins should be understood to be routines that might bgeoeral use to a wide
range of file loaders or segments of code that are written iroeernompact manner
(ie, as an XOP). To be accessible as a plug-in, the plug-iatimm will be required to

conform to conventions in its name (UdFLPlugInXXX(YYY))@¶meters (YYY is

the file loader standard structure).

After the file loader standard structure is zeroed usiti].ZeroStructure (udFL),
the parameteudFL . plugIns will contain a string list of all currently accessible plug-
ins. This list can be checked for a particular plug-in anddlug-in used when available.
The example code below shows how this could be designed.

if (strlen(ListMatch(udFL.plugIns,"udFLPlugInInvertData")==0)
. process by Igor Pro code
else
udFLPlugInInvertData(udFL)
endif

29

4.3.5 Using Return Parameters to Assure Standard Behavior

Defining Character

The “character” of the file loader is an indication of whatdileis designed to handle
and how (in general) the results will appear after it is cagtgal The parameters in the
Descriptors section of the file loader standard structufmelehis. Whenever an ex-
ternal routine queries your file loader, it should returnpamovalues of the descriptor
parameters. The initialization template shown previouslhhis document is one gen-
eral way this can be done. Further comments about each peggrarameter are given
below.

No convention applies when the file loader can handle mone ¢im@ mime type.
One proper method of return is to set the mime type to the nwetmon value. Alter-
natively, the mimetype can be set to an empty value. Finddgymime type can be set
dependent on other user inputs, suclu@®. . userCtrl or udFL.userData, if this is
appropriate to how the loader behaves. In no event (as o¥énsson) should the mime
type be set to more than one value. This option is reservetufare versions of the
structure.

When more than one file extension can be loaded, the conveistito create a
string list of all possible extensions. The understandsnghie search for file extensions
takes precedence over the search for mimetype when segfohifiles to load, and, as
needed, all files containing all possible file extension$ el collected and displayed
for selection by a “standardized” input routine.

When the file loader can return more thai¥L. itemsType value, and absent any
other qualifiers, it should return the BIT-wise addition fssible values. The exam-
ple in Proposal 5A illustrates this convention. For such ftirtype” file loaders, when
the value ofudFL.itemsType depends specifically oadFL.userCtrl, the value of
udFL.itemsType must be returned appropriate to the valua@¥L. itemsType. The
example code on the next page shows such behavior in aneutlin

30

. within initialization function
udFL.itemsType = 17 // loader returns globals and images

. within the actual loader function
switch(udFL.userLCtrl)
case 1:
. load both globals and images
udFL.itemsType=17
break
case 2:
. load only images
udFL.itemsType=16
break
endswitch

When only one data type is stored by the file loader, the cdioenfor return-
ing proper values mdFL . itemsType also apply for the value afdFL.itemsDim[N].
When more than one type is stored by the file loader, no comreekists for setting
the value ofudFL. itemsDim[N]. An appropriate return value may be a value of ZERO
(0), to indicate a state that requires further study by thee.us

With the exception of the convention that “Auto” be the firatwe, the proper string
names to return imdFL.procModes are left entirely to the programmer. The only
suggestion is, the names should be short (to fit in a popup tsthand descriptive (to
inform the user of their function). By the way, the languagedifor the string is also
entirely up to the programmer. One method of preparing lagguocalizations for this
menu is to us@trConstant values in a localization file. The example below shows a
section to define the values for English or German, with tireecui localization being
for German.

31

. in the loader preamble
#tdefine DEUTSCH // this is a German localization

#ifdefine ENGLISH
StrConstant udFLloadModes = "Auto;Select the Files;Test;"
#endif

#ifdefine DEUTSCH
StrConstant udFLloadModes
#endif

"Auto;Files Auswahlen;Prufen;"

. in the initialization routine
udFL.procModes = udFLloadModes

Pre-processing Data

A “standardized” file loader ONLY loads the file as data. It i©Nto be designed to
display or analyze the data after it is loaded. This extentsa gray area however,
because some file loaders may also provide “pre-procegsdgpes of routines.

A valid pre-processing routine is understood to be a routira transforms one
of the data types into a different data type. A function tla&et a (previously loaded)
notebook and translates it into a keyword-list of valuesvalal pre-processing routine.
A function that transforms a matrix to an image is also vaAdunction that displays
an image for the user is not a valid part of a file loader.

Whenever a pre-processing (or transformation) routinpdied to data by the file
loader, the value ofidFL.itemsType must reflect the value of the data AFTER the
transformation has been applied. This also applies to thewd udFL. itemsDim[N].

Returning Item Details
The two parametersidFL. itemsCount and theudFL.itemsList Structure, provide
additional documentation of what the file loader has stored.

The value ofudFL.itemsCount is the total count of all items stored by the file
loader. Each string in thedFL . itemsList structure is a string list of the items loaded,
potentially using full path name designations startingrfitheroot : data folder.

In one senseydFL. itemsCount is redundant information because it can be directly
obtained by counting the items iRIFL. itemsList. In another, it provides a direct
value for a user to quickly confirm everything has been loguegerly, for example
when the items are the same type but may be loaded acrosedifib-folders.

32

Handling Errors

The values olidFL.errCode andudFL. errMsg should be used to inform the user of
problems during the loading. A standard function has beewiged to “set” the values,
as the example below shows.

case 1:
if (udFLAssurePaths(udFL)<0)
udFLSetError (udFL,"File names are not proper",-1)
SetDataFolder $cdf
return -1
endif
. continue processing in Auto mode

Errors that cause aborts should cause a return from therleatea value of -1.
Otherwise, successful loading should return a value of 0.

5 Some Standardized File Loader Processing Functions

A collection of functions is provided as part of a standardikage. They have been
referenced in the examples above. Their specific use isideddn more detail below.

5.1 Zeroing the Standard Structure

The command below will fill the file loader standard structwieh default (blank or
otherwise) values, as shown. In particular, the valuedst. . plugIns will contain the
list of available plug-in modules that follow the proper riagiconvention. This does
not test the validity of the plug-in!

33

Function udFLZeroStructure (udFL)
STRUCT udStFiLrStandardStructure &udFL

udFL.mimetype = ""
udFL.extensions = ""
udFL.itemsType = 0
udFL.itemsDim[0] = 0
udFL.itemsDim[1] = 0
udFL.itemsDim[2] = 0
udFL.itemsDim[3] = 0
udFL.loadModes = "Auto;"
udFL.procModes = "--;"
udFL.setNames = 0
udFL.eventCode
udFL.userLCtrl
udFL.userPCtrl
udFL.userData = ""
udFL.reportCtrl = 0
udFL.plugIns = FunctionList ("udFLPlugIn*",";", "KIND:6")
udFL.namePrefix = "" udFL.pathStr = ""
udFL.fileList = ""
udFL.returnCtrl = 0
udFL.toFolder = "root:"
udFL.itemsCount = 0
udFL.itLst.GLOBALS = ""
udFL.itLst.LISTS = ""
udFL.itLst.WAVES = ""
udFL.itLst.MATRICES = ""
udFL.itLst.IMAGES = ""
udFL.itLst.NOTEBOOKS = ""
udFL.itLst.PROCEDURES = ""
udFL.errCode = 0
udFL.errMsg = ""
return 0O

end

I
O O O

34

5.2 Assuring the File Paths

Function udFLAssureFilePaths(udFL)

The command above will assure thaiFL.pathStr andudFL.fileList have
proper values. It returns a -1 when they are incorrectly &aed. Otherwise, it re-
turns the number of files to be loaded. It returns a blank@inmudFL . pathStr when
multiple files are to be loaded from multiple directories.

5.3 Moving To and Creating New Data Folders

Function udFLSetDataFolder (udFL, [setit])

The command above will move to a specific folder defined inuitL. . toFolder
directive. If the folder does not exist, the function cresaie The optional variable
parametesetit will determine whether to stay in the specified folder or retio the
folder of origin. Whensetit = 0, the function returns to the folder of origin. This is
equivalent to creating a new data folder but not moving ibtaNhensetit = 1, the
function also moves to the new or existing folder. The defsuletit = 1, so a call to
udFLSetDataFolder (udFL) will create (as needed) the new data folder and move to it
directly while a call toudFLSetDataFolder (udFL,0) will create (as needed) the new
data folder but will not change folder locations.

5.4 Setting Error Codes and Messages

Function udFLSetError (udFL,errStr,errCode)

This command will set thedFL.errMsg and udFL.errCode parameters to the
string errStr and the numeric parameterrCode, respectively. It always returns
ZERO.

35

5.5 Handling Error Codes and Messages

Function udFLHandleError (udFL,errStr,errCode)

WhenudFL. errCode = -1, this command will put up BoAlert 0 dialog box with
the contents ofidFL.errMsg and will then Abort the routine. WhetdFL.errCode
= 0, this command will print a WARNING with the contents @dFL.errMsg in the
history window.

5.6 Querying the Loading Modes

Function/S udFLQueryLoadModes (fp)

The command above will return a string list of the availableding modes for the
loader function nametip (a string input).

5.7 Querying the Processing Modes

Function/S udFLQueryProcModes(fp)

The command above will return a string list of the availalblegessing modes for
the loader function nametp (a string input).

5.8 Querying the Renaming Options

Function/S udFLQuerySetNames (fp)

The command above will return a string list of renaming amian a manner that
can be used in a popup menu. Those modes that are unavaildlile disabled.

The string with all options enabled will read:
"Auto;Filename;File Header Info;Prefix+Number;Manudlily;

36

5.9 Initializing a Loader

Function/S udFLInitializeLoader (udFL,fp)

The command above will inialize the file loader nanf@da string input) using the
standard structuredFL.

5.10 Running a Loader

Function/S udFLRunLoader (udFL,fp)

The command above will run the file loader namigd(a string input) using the
standard structuredFL.

5.11 Listing Available Loaders

Function/S udFLLoaderList (how)

The command above will return a string list of the availalbdedardized file loaders.
The parametetiow determines the format of the string list. Whiesw = 1, the function
names include the standard prefdStFiLr. Whenhow = 0, the loader function names
have the prefixes removed. The former case is useful for ngnthie function, and the
latter for showing the function in a popup menu.

5.12 Pulling Information from User Data

Function/S udFLStripUserDataString(udFL)

This command pops and returns the next string in udFL.ugar@asuming that it
is a string list separated by “;”.

37

5.13 Checking for a Plug-In

Function/S udFLCheckForPlugIn(piname,udFL)

This command checks for a plug-in named withimame (a string). If it exists, it
is run using the current instancew{FL.

5.14 Renaming Inputs

Function/S udFLRenameInput(cList,prefix, [index])

The command above will rename all items in the stringdistst using the string
in prefix and a numeric value. This function tries intelligently tacigidier the next
name in the sequence. It also prefixes strings Witland variables witlv_ (to avoid
conflicts). This function uses an additional data foldeechiory function that is kept
static to the procedures (and is therefore inaccessibletside calls). When passed the
optional value ofindex, it is used in place of a randomly chosen numeric value.

5.15 Getting a List of Folders

Function/S udFLFolderList()

This command returns all folders from tlreot : level exclusive of the Packages
folder and including root.

5.16 Getting a Folder Directory Listing

Function/S udFLDataFolderDir(mode,prefix)

This command is makes use mitaFolderDir andGrepList in the current data
folder. The value ohode is 2, 4, or 8 for waves, variables, or strings respectivehe T

38

value ofprefix is supplied toGrepList to select from all returned values for only
those containing the given prefix.

6 Acknowledgments

Thanks Wavemetrics! The ability to use STRUCTURES and Fehaofake this entire
process much easier.

7 Contact

Suggestions and comments should be posted at the Igor Egedab site. | will be
using it exclusively to track this project.

8 Legalize

This software is free to use as per the terms of any other gdybkleased software.
Enjoy!

39

	Summary
	Background
	Loading Data Using Igor Pro Menus
	Loading Data Using Igor Pro Commands
	Loading Data Using User Defined File Loaders
	Loading Data Using Standard User Defined File Loaders

	Setup
	Requirements
	Package Contents
	Installation

	A Standardized File Loader
	Format
	Function Call, Name, and Parameters
	Structure Name
	Structure Contents

	General Use
	Programming Applications
	Using Templates for Basic Development
	Reading Input Parameters to Find Files
	Processing What is Loaded
	Using Input Parameters to Refine Loading or Processing
	Using Return Parameters to Assure Standard Behavior

	Some Standardized File Loader Processing Functions
	Zeroing the Standard Structure
	Assuring the File Paths
	Moving To and Creating New Data Folders
	Setting Error Codes and Messages
	Handling Error Codes and Messages
	Querying the Loading Modes
	Querying the Processing Modes
	Querying the Renaming Options
	Initializing a Loader
	Running a Loader
	Listing Available Loaders
	Pulling Information from User Data
	Checking for a Plug-In
	Renaming Inputs
	Getting a List of Folders
	Getting a Folder Directory Listing

	Acknowledgments
	Contact
	Legalize

