User-Designed Standardized File Loader
udStFiLr XML
Users Guide

Version 3.00()

J. J. Weimer
September 6, 2007

Distribution Details

Developed with Igor Pro Version: 6.0.2

Procedure Files: udStFiLr XML and udStFiLrXML.lcl

Demos: none (uses SimpleStandardLoaderPanelDemo)

Experiments: none XOPS: none Help Files: none
Requires Packages: udFLStandardFunctions and udFL$tStdacture
Also Requires: a working XSLT engine (xsltproc on MacOS opnfAVinXX)

Abstract

The udStFiLrXML procedure is designed to read an XML file iflgor Pro according to rules in
a user-generated XSL file. Values can be stored a parameteiailes or strings), keyword-list
strings (in two variations), or waves. In addition, code banincluded in the XSL file to run
Igor Pro functions or operations.

This file loader procedure is compliant with proposed stessléor user designed file load-
ers, and it requires the procedures developed for such éliels. It can be used directly as a
“plug-in” module” for the simple file loader panel or otheastlards compliant file loader user
interfaces.

Applications for this file loader include Igor Pro procedsitbat need access to databases
of numeric or string values that are provided in XML format.n &xample XLS that reads
in values (atomic number, density, electron configuratiaip,for 112 elements from an XML
periodic table (obtained directly from the Web) is providéah additional XLS that reads header
information and row-based intensity data from an x-rayrddtion system is also given.

This document was generated usiAgeX



Contents

1 Summary 1
2 Setup 1
2.1 Requirements . . . . . . . . e 1
2.2 PackageContents. . . . . . . . ... 1
2.3 Installation . . . . . . .. e 2
3 Use 3
3.1 ProcessingMethod . . . . ... .. .. .. ... 3
3.2 FileFormats . . . . . . . . . e 4
3.21 XMLFile . . . . e 4
3.22 XSLFile . . . .. e 6
3.23 HTMLResultFile . . . .. .. ... . .. . . . 8
3.3 Storage OptionNS . . . . . . . o e e e e e 8
3.3.1 Parameters. . . . . . .. e 9
3.3.2 Keyword-ValueLists . . . . . . ... . 10
3.33 Waves . . .. e 11
3.3.4 Row-VectorWaves . . . . . . . . . e e 12
3.3.5 Matrices (notyet fullyimplemented!) . . . . . . ... .. ... ........ 12
3.4 Coding. . . . . 13
3.5 FurtherExamples . . . . . . . . . . e 14
3.6 Standard User InterfaceModes . . . . . . . . . . .. ... 14
3.7 Localization. . . . . . . . .. 15
3.8 ForProgrammers . . . . . . . . . e e e 16
4 Package 17
5 Known Limitations 17
6 Acknowledgments 18
7 Contact 19
8 Legalize 19
9 \Version History 20



1 Summary

The udStFiLrXML procedure is designed to read an XML file itdor Pro according
to rules in a user-generated XSL file. Values can be storedaniaty of ways, and Igor
Pro commands can be issued from within the XSL.

Applications include Igor Pro procedures that need accesiatabases of values
that are otherwise provided in XML format.

An example that reads in values (atomic number, densitgtrele configuration,
...) for 112 elements from an XML periodic table (obtainecedily from the Web) is
provided. An additional example reads a database into a,ve&¢e the wave scaling,
and attaches a wave note.

2 Setup

2.1 Requirements

This procedure has only been tested on Igor Pro 6.0 and isediefiith a minimum
requirement of Igor Pro 6.0. Please see the section Knowiitatilons in sectiord to
learn how this procedure may be used with Igor Pro 5.0.

2.2 Package Contents

The procedure is provided in a ZIP archive. Unpacking théiaecwill reveal the
primary (root) folder udStFiLrXMLN, where N is the versiommber. The directory
structure inside this folder is shown below.

i Name |
v |2 datal
) PeriodicTable.xml
9 PeriodicTable.xsl
v [F dataz
% simplescan.xml
) simplescan.xsl
v [# doc
= udStFiLeXMLUserGuide. pdf
0 udStFiLrXMLVersionHistory.xml
v | udStFiLrXML
udStFiLrXML.ipf
udStFILIXML.Icl.ipf




datal
This directory contains XML data from a periodic table ofrents and an XSL file to
load it into waves.

data2

This directory contains XML data from an x-ray diffractiopssem and an XSL file to
show how to load the row of intensity data, load header in&dfom, and set the wave
scaling.

doc
This directory contains the documentation (this documamt)an XML version history.

udStFiLrXML

This directory contains two files. The file udStFiLrXML.ipbotains the code to read,
parse, and store the XML data into Igor Pro. The file udStFNMitXicl.ipf contains
dialog and alert strings in different languages.

2.3 Installation

The procedure can be installed in one of two ways. In boths;dke entire directory
udStFiLrXML is to be copied (or moved) to a specific location.

e To have the file loader available every time you start Igor, Rrove or copy the
udStFiLrXML directory to thelgor Procedures directory of your local instal-
lation of Igor Pro.

e To have the file loader available only when you wish to inclitgdirst move
or copy theudStFiLrXML directory to theUser Procedures directory of your
local installation of Igor Pro. Then, when you wish to incuttheudStFiLrXML
procedure in a specific experiment, open the Macros windowevit Igor Pro
and put the line

#include "udStFiLrXML"

somewhere directly after thigpragma rtGlobals=1 directive that appears in
this window.

This procedure can be used directly as a “plug-in” to the $&n$tandard Loader
Panel Demo, therefore no stand-alone experiment is prd\dde user interface.

2



3 Use

The udStFiLrXML procedure can be used in one of two ways. It can be integrated
into more complex routines as a file loader module. An exaroptéis is where the
procedure reads preference settings for a package thabaed externally in an XML
database. In this case, the user is typically unaware of aschb direct interaction
with the operation of the udStFiLrXML loader—it is just a fttioning part of the larger
package.

Alternatively, theudStFiLrXML procedure may be used as the primary method to
load data in XML databases into Igor Pro for further proaegsin this case, the user
is typically prompted to select the data file(s) to load.

3.1 Processing Method

Previous versions of this procedure parsed the XML file elytiwithin Igor Pro. This
version parses the XML using an XSLT engine. The XSLT engsesuhe XSL file to
parse the XML and to generate a result file. The result filessgato the udStFiLr XML
procedure for further processing (parsing).

The advantages of using an XSLT engine are in speed, flayjkaind durability.
Because the XSLT engine is a compiled procedure, the ti@msiains faster than what
can be provided by using Igor Pro coding (exclusive perh&p&ds). Because XSLT
engines are well-developed, they provide far more options/du to decide how to
input your data than | can generate in a reasonable timellf;ihacause XSLT engines
are well-maintained, they remove a significant portion eftblarden from me to update
this procedure.

Because this procedure is now intimately tied to an XSLT e&ghaving a basic
familiarity with proper XML and XSL coding is now essentiah fact, | strongly rec-
ommend that you become conversant with the basic terms in XNd. XSL as the
FIRST step toward using this procedure. The success of anglation you want to
make can be directly dependent on having such knowledgelefkens needed to pro-
vide this knowledge are well beyond the scope of this docun®good starting point
is the tutorial atttp://www.w3schools.com/xsl/

You will need to have an XSLT engine installed on your compu@®n MacOS
X, xsltproc is installed by default (at least with 10.4.x)ourcan check this by typing
xsltproc -V (case sensitive) on the terminal. You can check for updatesltproc
at http://www.xmlsoft.org/ On a WinXX system, you have to install an XSLT en-
gine manually. The udStFiLrXML procedure works ONLY withtdvaXML found at
http://lwww.altova.com/altovaxml.htmYou must assure that AltovaXML is in your ex-

3


http://www.w3schools.com/xsl/
http://www.xmlsoft.org/
http://www.altova.com/altovaxml.html

ecution path - it must be executable at any directory levepsy by typing AltovaXML.

| also recommend that you installa command-line or GUI tyfgrocessing checker
to validate your XSL transformation before using it in thisgedure. This is especially
important to remove and control for spurious or incorrectiage return/line feed se-
qguences as files are transferred from Mac/Win/Unix systémsthe MacOS, | use the
simple but effective tkxIstproc founidere

Finally, I cannot vouch completely for the robustness of plaesing algorithm to
convertthe HTML, especially with regard to how spaces,,tabd carriage return/linefeed
sequences are handled. Please see the section Known lomstat sectiorb for further
comments about this.

3.2 File Formats

With an XSLT engine, three files are part of the processingisece (instead of two
as in previous versions of this procedure). The XML file cordahe data that is to
be read into Igor Pro. The XSL file defines the translationruciions for the XSLT
engine. Finally, the XSLT engine generates a result fileithpassed to and defines the
processing (parsing) instructions for Igor Pro.

The format of the result file from the XSLT engine can typigalé set by a directive
in the XSL as one three options: text, html, or xml. To prodéssresult file properly
within Igor Pro, the html option is required.

3.2.1 XML File

The XML file should have the basic format shown below. Pleaseastutorial on XML
for full details to the summary information given below.

<?xml version="1.0"7>
<DATABASE>
<ELEMENT>
<VALUE1>valuel</VALUE1>
<VALUE2>value2</VALUE2>
<VALUE3>value3</VALUE3>

<VALUEN>valueN</VALUEN>
</ELEMENT>
<ELEMENT>


http://tclxml.sourceforge.net/tkxsltproc.html

</ELEMENT>
</DATABASE>

DATABASE
The name of the XML database. For example, the Periodic TEblé& file has a
DATABASE name of PeriodicTable.

ELEMENT
The name of the elements within the database. For example,BMENTS within the
Periodic Table XML file have the name ATOM.

VALUE;]j

The name of thg!" property of the given ELEMENT within the DATABASE. Within
the Periodic Table XML file for example, ATOMS have VALUEs suas SYMBOL,
NAME, ATOMIC_WEIGHT, DENSITY, and ELECTRONIC_CONFIGURADN.

valuej

The value (numeric or string) given to th¢!" VALUE of the given ELEMENT. For
example, for one ELEMENT in the Periodic Table XML file, a SYI@B value Au

is associated with the NAME value Gold. Thaluej parameter is never enclosed in
guotes, regardless of whether it is a string value or a nuwaiue.

Multilevel nesting to indicate properties of VALUES is sugted in Ver. 3.00.

Variations of the above XML file format are permitted. The MAEj names can
include ATTRIBUTES in the following manner:

<VALUEj ATTRIBUTE="attribute'">valuej</VALUEj>

ATTRIBUTE
The designation indicating the VALUE] has a particularihtite.

attribute
The attribute associated witlaluej. The attribute must be enclosed in quotations!

An alternative form of data storage in an XML file is shown bg gection below.



<?xml version="1.0"7>
<DATABASE>
<ELEMENT>
<NAME>name1</NAME>
<VALUES>valuel value2 value3 ... valueN</VALUES>
</ELEMENT>
<ELEMENT>
<NAME>name?2</NAME>
<VALUES>valuel value2 value3 ... valueN</VALUES>

</ELEMENT>

</DATABASE>

In the above format, the data is stored as a row within one exerof the XML
database. The data values may be numeric or text and muspbaeats by a single
space only!

3.2.2 XSL File

The basic XSL file should have the format shown below. Agatu &re instructed to
find tutorials on XSL to clarify points made in the summarycdissions below. Lines
marked as REQUIRED are necessary to make the translatidsimeonork properly,
they are otherwise optional in well-formed XSL files.

<?xml version="1.0" encoding="UTF-8"7>
<7igorpro version=VERSION?> (REQUIRED!)

<xsl:stylesheet xmlns:xsl="..." version="1.0">
<xsl:strip-space elements="x"/> (REQUIRED!)
<xsl:output method="html" indent="yes"/> (REQUIRED!)
<xsl:template match="//ELEMENT">

</xsl:template>

</xsl:stylesheet>



VERSION
A string version number. As of 3.00, this value should'tie 04" (see the known
limitations in Sectiorb).

Strip-Space and Output Designations
The strip-space designation assures that translationvesrgpurious space characters
before the result file is read into Igor Pro for further pagsin

The required output method of the translation is HTML, foagens illustrated in the
examples later in this document. The indent designatiomrasghat lines are properly
formatted before the result file is read into Igor Pro forlfertprocessing.

ELEMENT
A name of a node as it appears in the XML file. The capitalizatibELEMENT names
in the XSL should follow exactly with those given in the XML.

The translation of the XML that is done by the XSLT engineeglon what is pro-
vided for a template. The XSL file may have more than one tetepkach template is
applied at its particular node.

Four templates will likely be within your XSL.

e match = "/"

This is the root node template. It matches at the topmost téviee XML tree.
The template defined in this match will include the primarnyolat of the docu-
ment that is sent to Igor Pro.

e match = "x"

This is the match for every node within the XML tree. Use teimplate to define
processing that should occur for ev&yEMENT throughout the XML.

e match = "text()"

This template matches all text nodes within the XML tree.

e match = "ELEMENT"
This template only matches when the node has the desigrEitRMENT.

A detailed discussion of XSL commands within the bounds einaglate is beyond
the scope of this document. Specific examples below can asrgaides.

7



3.2.3 HTML Result File

The file that is passed from the XSLT engine to Igor Pro mushlidgml format. The
parsing within Igor Pro recognizes specific html coding todia data storage. They are
based on html tags. In addition, the result file can direct Ryo to execute commands.
Here is an overview of the html tags recognized with Igor Pro.

<DIV>...</DIV>
TheDIV tag is a directive to assign contents to parameters, eighearéables or strings.

<ol>...</ol>0Or <ul>...</ul>
Theol orul tag is a directive to assign contents to keyword=value glrgts.

<table>...</table>
Thetable tag is a directive to assign contents to waves or matrices.

[code] ... [/code]
Thecode tag is a directive to execute the contents as functions aiatipas.

Note that UPPER or lower case designation of the tags i®uaelt for the input of
the html tags to Igor Pro.

3.3 Storage Options

In general, all storage options use an html tag and an additébrective, thed = "..."
directive. The tag defines how to store the contents andltlrective defines how and
where to store them. Some tags require thalirectives, others do not. In any case,
the id directive should be placed directly within the opening tagignation. General
examples of proper and improper tag + directive formats laogva below.

<DIV id = "string"> ... </DIV>- PROPER FORMAT
<table id = "waves"> ... </table>- PROPER FORMAT
<DIV> ... </DIV> - IMPROPER FORMAT

<table> ... </table>- IMPROPER FORMAT

Further clarification of the storage options is given on &dagcase basis.

8



3.3.1 Parameters

The contents withimIV tags are stored as parameters. The proper format of the html
coding to store aalue as a string or variable is

<DIV id = "string/variable">
<p id = "name">value</p>
</DIV>

TheDIV tag directs Igor Pro to create parameters. Tééirective defines whether
the parameters are to be strings or variables. Each. .. </p> line within the con-
tents of aDIV block defines an individual parameters. Th& = "name" directive
establishes the name of the parameter, andihee within thep tags gives its value.

Example 3.3.1.A
The following code stores three string parameters, heatwtTime, and sample. The
value of header is set by text. The other two parameters iconbaéh text and selections
from the XML file.

<DIV id="string">

<p id="header">FILE HEADER\r</p>

<p id="startTime">Start: <xsl:value-of select="startTime">\r</p>
<p id="sample">Sample: <xsl:value-of select="sampleType">\r</p>
</DIV>

Note that text content is NOT quoted and theis used to designate where a line
break (carriage return) is to be placed.

Example 3.3.1.B
The following code stores two variable parameters, SscdriEanan.

<DIV id="variable">

<p id="Sscan"><xsl:value-of select="startScan"></p>
<p id="Escan"><xsl:value-of select="endScan"></p>
</DIV>

Mixing string and variable storage within oD&V is illegal.

9



3.3.2 Keyword-Value Lists

The contents withirol or ul tags are stored as keyword-value lists. Order lists use
the formatkeyword = value and unordered lists use the formx@tyword:value. The
proper format to store keyword-value lists is

<ol id = "listname">
<1i id = "name">value</1li>
</ol>

Theol (orul) tag directs Igor Pro to create keyword-value lists. Thelirective at
this level defines whether the name of the list string. Eadh» ... </1i> line within
the contents of @1 block defines an individual keyword-value. Thé& = "name"
directive within theli establishes the name of the keyword, andstheue within the
11 tags gives its value.

Example 3.3.2.A
The following code stores a keyword=value list string nargeaphprefs. The string
contains information about the graph title, scalings, afels on the x-axis and y-axis.

<ol id="graphprefs">

<1i id="title"><xsl:value-of select="title"></li>

<1i id="xlabel"><xsl:value-of select="axis/x/label"></1i>
<li id="xscale"><xsl:value-of select="axis/x/scaling"></1i>
<1i id="ylabel"><xsl:value-of select="axis/y/label"></1i>
<1i id="yscale"><xsl:value-of select="axis/y/scaling"></1i>
</ol>

10



3.3.3 Waves

The contents withirtable tags are stored as waves. Because two variations of wave
storage exist, thed tag in the table code is required. The proper format of thd htm
coding to store values as waves is

<table id = "waves">

<tr id = "name">
<td>value</td>

</tr>

</table>

Thetable tag directs lgor Pro to create waves. Tiedirective defines the appli-
cation as wave storage. Eactr> ... </tr>segmentwithin the contents otable
block defines an individual wave. The = "name" directive establishes the name of
the wave. Theralue within thetd tags gives the values of each element of the wave.

To be clear - every ROWtr>. . .</tr> within a table is a NEW WAVE. Every
DATA <td>...</td> element within a row is a value that is stored in the given wave

The parsing procedure in Igor Pro will create a string or a @&ticnwave appropri-
ately based on the first value that is stored in the wave.

Example 3.3.3.A
The following code stores a set of values into waves called diod ts.

<table id="waves">
<tr id="ToC">
<xsl:for-each select="dataPoints">
<td><xsl:value-of select="Temp"></td>
</xsl:for-each>
</tr>
<tr id="ts">
<xsl:for-each select="dataPoints">
<td><xsl:value-of select="Time"></td>
</xsl:for-each>
</tr>
</table>

11



3.3.4 Row-Vector Waves

This is an alternative option to store values as waves whendppear in the XML as
a single row vector. The proper format of the html coding towestow-vector values as
waves is

<table id = "row-vector">

<tr id = "name">
<td>value</td>

</tr>

</table>

The table tag directs Igor Pro to create waves. Tiedirective defines this ap-
plication as wave storage from a row-vector. Eael> ... </tr> segment within
the contents of aable block defines an individual wave. ThHe = "name" directive
establishes the name of the wave. Th&ue within thetd tags gives the values of each
element of the wave.

The parsing procedure in Igor Pro will create a string or a eticrnwave appropri-
ately based on the first value that is stored in the wave.

Note, this option could possibly also be handledass storage by means of clever
coding (using<xls:for-each ...> statements) within the XSL itself. Examples of
such are solicited from users.

Example 3.3.4.A
The following code stores a set of row-vector values into eercalled intensities.

<table id="row-vector">
<tr id="intensities">
<td><xsl:value-of select="intensities"></td>
</tr>
</table>

3.3.5 Matrices (not yet fully implemented!)

A method to input matrices is under consideration. Please yaur interest in such a
feature on thégor Exchange Web site

12


http://www.IgorExchange.com/project/udStFiLrXML/

3.4 Coding

The XSL file can contain directives to Igor Pro as executatdeements. The proper
format of the html coding to direct Igor Pro via functions @resations is

[code]
code statement

t)éode]

All codes are executed in the data folder where values aredst@hey can reference
global parameters, waves, or matrices created during thhags operations as long as
they proceed the storage operation itself. The best plapattooding directives in the
XSL is within the root template AFTER a statement to applyo#iiler templates.

Example 3.4.0.A
The following XSL stores string parameters and manipulttes afterward.

<xsl:template match="/">
<body>
<xsl:apply-templates/>

[code]

header += startTime + user
killstrings/Z startTime, user
[/code]

</body>
</template>

<xsl:template match="Comments">

<DIV id="string">

<p id="header">FILE HEADER\r---\r</p>

<p id="startTime">Start: <xsl:value-of select="start"> with </p>
<p id="user">User: <xsl:value-of select="userID">\r</p>

</DIV>

</template>

13



The result of this XSL translation will be a single string @aeter named header with
the contents such as:

FILE HEADER

Start: December 12, 2008 with User: apsmith

3.5 Further Examples

Please see the two example XSL/XML sets provided in the tliressdatal anddata2
for further examples.

3.6 Standard User Interface Modes

As a standardized file loaderdStFiLrXML has three modes of operation: Auto, Auto-
XML, and Manual. Further details of these modes are predeagain in the section
For Programmers.

Auto Mode

In Auto mode, the procedure must be provided with all infalioraneeded to automat-
ically load and parse the files. In particular, this inclutles file names for the XSL
and XML files. This mode is typically used by programmers whshato integrate the
routine into a larger package.

Auto-XML Mode
In Auto-XML mode, the procedure will present a dialog boxuesting the user to
select an XSL file. The procedure then searches in the sam&aty for an XML file
with the same name.

As an example, the following two files can be processed inrttude:

mydata.xsl
mydata.xml

At the first dialog prompt, the user should selectitligata.xsl file. The routine
will automatically find thenydata.xml file and process it.
Both files must be in the same directory!

14



Manual Mode

In Manual mode, the procedure will present a dialog box reting the user to select
an XSL file followed by a dialog box requesting the user to &ed@ XML file. Both
files can be in separate directories.

You can test all three of these modes in the Simple StandaaddroPanel Demo
using the data provided in the directoriscal anddata?2.

3.7 Localization

You can change the dialog and alert texts to a different laggu This is done by
modifying theudStFiLrXML.1cl. ipf file.

The file starts with a compiler directive that is a definitidrtlee current language.
Below this are the language specific alert and dialog strifgsubset of the file is
shown below.

#define ENGLISH

#ifdef ENGLISH

StrConstant alert00 =
StrConstant alertO1l .
StrConstant alertOla = "..."
StrConstant alert02 = "..."

#endif

To change the language, first confirm that a command btackef ... #endif
exists for the language you want to use. Then, change thedamegafter thétdefine
directive to that language. Please use ALL UPPER CASE LETI &Ren doing this!

The line given below changes the language from English tan@er assuming the
block of codet#tifdef DEUTSCH ... #endif exists to define the strings in German.

#define DEUTSCH

To create a new language localization, copy the entireiagisiock of code found
between#tifdef ENGLISH ... #endif. Paste this at the bottom of the localization
file. Change thetifdef ENGLISH to reflect the language you wish to define. Then,
change all of the string text (between quotation marks) flecethe proper translation

15



of the alert and dialog strings. Do not change the names ol or dialog string
constants when doing this.

| encourage anyone who develops a new language localiZatidhis procedure to
forward it to me so that | can post it for others to use.

3.8 For Programmers

Programmers who wish to use the procedure directly in thwir kgor Pro routines are
encouraged to review the guidelines below. Only one poitbfievel access exists.

Function udStFiLr XML (udFL)
This function is accessed according to the rules definedeiptbposed standard docu-
ment. The relevant parameters are outlined below.

Descriptors

udFL.mimetype = "TEXT"

udFL.extensions = ".xsl;.xml;"
udFL.procModes = "Auto;Auto XML;Manual;"
udFL.itemsType = (270 + 271 + 2°2)
udFL.itemsDim[0]=0

udFL.setNames=1

When queried withudFL . itemsType Set, the procedure also returns the following:

2
udFL.Dim[0] = 3
4
udFL.Dim[0] = 0O
Inputs

The inputs will control the loader in the following manner:

udFL.userCtrl ... sets processing mode
udFL.userData ... used during programming (see below)
udFL.reportCtrl ... used only sparingly

16



The “Silent” mode of control and the “Normal” mode of contesk the same. The
“Verbose” mode of control keeps the parsing notebook residéer it has been used
and reports progress of the loading, parsing, and savingbpes throughout.

Localizers
The inputs will control the loader in the following manner:

udFL.pathStr ... according to standards
udFL.filelList ... according to standards
udFL.returnCtrl ... currently unused

In “Auto” mode, the values ofidFL.pathStr andudFL.fileList can be passed
in one of two ways. In the first casedFL . pathStr should contain the full path to two
files in the same directory. CorrespondinglgfFL.fileList should contain just the
names of the two files, with the XSL file first and the XML file sadan the list. In
the second method, the valuewfFL.pathStr should be passed empty (&%), and
udFL.fileList should contain the full path to the XSL file followed by thelfpath
to the XML file.

Returns
The file loader will return -1 on a fatal error. It may have a tane of its own internal
alerts and standardized alerts u#¥L . errCode andudFL.errMsg.

4 Package

This file loader no longer requires creation of a Package fédar. Any remaining
references to such will be removed in future releases.

5 Known Limitations

e The procedure parses the XSL and XML using an XSLT engine.arewdvised
to learn how to access such engines using command-line ort@ild on you
system. Testing your XSL translation using such tools BEEGIRplying this
routine to read an XML file is strongly recommended!

e The algorithm used to parse the HTML in Igor Pro may have @noisl decipher-
ing spaces, carriage return/linefeed sequences, or tabs thiey appear before
HTML tags or within HTML elements. If you create what you e is a valid

17



XML/XSL set to generate a valid HTML (as proven by externatiteg), and
it cannot be parsed within the udStFiLrXML procedure, péeasepare a ZIP
archive of the experiment and the XML + XSL for me to check.

e On WinXX systems, the AltovaXML parsing process creates xaldP.txt file
for every XML job. The TMP file is supposed to be deleted bu¢ofis not. This
file can be deleted manually.

e The procedures may possibly be used with Igor Pro 5.0 by myakie modifica-
tions below. | do not assure this will work - please report does.

— First, put the udStFiLr XML folder in th&@ser Procedures folder of Igor
Pro. This modification will NOT work when the udStFiLr XML fdér is in
theIgor Procedures folder!

— Open the udStFiLrXML.ipf file within Igor Pro.
— Change thetpragma IgorVersion=6.0 to #pragma IgorVersion=5.0

— Change the line that statésnclude ":udStFiLrXML.1lcl" to read ex-
actly as#include "udStFiLrXML.1lcl" (remove the colon before the file
name).

— Save the procedure file.

e To use the stand-alone procedure whenif®etFiLrXML folder is placed in the
Igor Procedures directory, comment out the lineinclude "udStFiLrXML"
in the procedure window of the stand-alone experiment.

e Please pay attention to tigorpro version number you give in your XSL. This
will assure that your data is handled by the correct versfdh@udStFiLrXML
procedure file.

¢ Algebraic manipulations are handled withinde segments.

e Do NOT quote string values when providing them as input \@hoegparameters
or lists. Follow carefully the formats used in the examples.

6 Acknowledgments

Many thanks go to Shaun Roe who was instrumental in estatdighe proper format
for the XSL file in the transition from 1.12 to 2.0.

18



Thanks to Luc Ortega for sending the XRD data as a motivataméate the row-
wave method of input and to code the routines using XSLT exggin

Thanks to Holger Taschenberger for the clarification antshabout how to handle
ExecuteScriptText on WinXX systems as the final piece of thezfe to creating an
XSLT engine compatible version for WinXX systems.

7 Contact

Suggestions, bug reports, and feature requests shouldsbedpan the project page at
thelgor Exchange Web sitd will be using it exclusively to track this project.

8 Legalize

This software is free to use but not free to modify and subsetiy market further as
per the standard terms of public domain software.

Enjoy!

19


http://www.IgorExchange.com/project/udStFiLrXML/

9 \Version History

An XML file outlining the version history is provided in the defolder.

3.00r (2007.09.06)

- now uses XSLT engine for both systems: MacOS uses xsltpeXX uses Alto-
vaxXML

- updated information in this document

3.00b1 (2007.09.03)

- now uses XSLT engine: MacOS uses xsltproc, WinXX uses ???

- can read parameters (strings or variables), keyword{iisting = sign or :), and waves
(as standard waves or row-vectors)

- can embed Igor Pro commands within XSL

- no longer requires internal globals (therefore, it has ackBge contents)

2.12r (2007.08.25)

- changed name from xml2igorpro to udStFiLr XML to indicatargdard compliance
(version 2.04r is technically the last version of xml2igarp

- included udFL.setNames=1 parameter in initialization

- fixed an incorrect test of_flag instead ofS_filenames after Open dialog box

2.11r (2007.08.22)

- verbose mode prints status at key points during processing

- file loader returns the items list and number of items

- re-distributed coding in the initialize and query segmsent

- fixed a missing alert code problem that prevented compiling

- open dialogs now check only for file extensions exclusivenohetype
- itemsType now conform to BIT-wise values

2.10r (2007.08.20)

- rewrote the code to conform to the working proposal on saedfiding file loaders
- checks for proper values of the optional KEY

- added row-wave as storage option

- require <?igorpro version =1.03 (to read as row-wave)

20



2.04r (2007.06.05)

- changed <?xmligorpro version to <?igorpro version (irparation for use of xslt en-
gines)

-added localization file to have dialogs and alerts in ddifé¢languages

- put file and localization file in a directory (director sttuee changed accordingly)

- added text-matrix as storage option

- require <?igorpro version =1.02 (to read as text-matrix)

- request (not require) that all lines in XSL end in ;" or ixt€units string) (in prepa-
ration for use of xslt engines)

2.03r (2007.05.07)

- added optionafilepath parameters tonputXSLFile(. ..) andinputXMLFile(...)
- added procedure information to the Users Guide

- updated Known Limitations information in the Users Guide

2.02b0 (2007.05.03)

- significant code changes to improve speed and reliabilipacsing XML

- moved coding for how=1 in parseXML to its proper location

- missing <KEY></KEY> lines in XML are now stored as "keywetrdor as blank
values in wave (you must use version. 01" in the<?xmligorpro ...> header!)

- return O cases in parseXML now kill notebook and reset dédaf

- added Package Folder information to the Users Guide

- added Known Limitations information to the Users Guide

2.01b1 (2007.05.02)
- fixed ordering of lines in XSL and clarified format requirem®in the Users Guide

2.01b0 (2007.04.30) (not released)

- used an<?xmligorpro version="..." input-as="..."?> directive to control
versioning of the xml parsing and input directives to thespar

- removed thexsl:parameter ...> directive as a way to define the input method
- procedure now checks for compatible XML version inforroatin the XSL

21



2.00b0 (2007.04.29) (not released)

- major change in format of XSL file (therefore the major versnumber change)
- cleaned up hidden notebook and other junk after abort of HSKML input

- can now input XML data to waves

- only one keyword=value input type supported

- can now define pre-processing of numeric values using egeformula in XSL
- unit designations stored as <xsl:value-of ...>; “UNITS”

- bug fixes and code revisions

1.12b0 (2007.04.24)

- changed versioning to include letter (a, b, r) and minor bem
- made pragma rtGlobals=1

- put Static Function states on internal functions

- can use KEY as name for storage wave (default is “name”)
- has how=0, how=1, and how=2 storage states

- reads UNITS in XLM file

- code changes and revisions

1.11
- changed names of files and folder from ParseXML to XML2IgorP
- first public posting

1.10
- added "how" switch to inputXMLFile() function for futurese (currently unused op-
tion) (not posted)

1.00 - first development (not posted)

22



	Summary
	Setup
	Requirements
	Package Contents
	Installation

	Use
	Processing Method
	File Formats
	XML File
	XSL File
	HTML Result File

	Storage Options
	Parameters
	Keyword-Value Lists
	Waves
	Row-Vector Waves
	Matrices (not yet fully implemented!)

	Coding
	Further Examples
	Standard User Interface Modes
	Localization
	For Programmers

	Package
	Known Limitations
	Acknowledgments
	Contact
	Legalize
	Version History

