
User-Designed Standardized File Loader
udStFiLr XML

Users Guide
Version 2.12(r)

J. J. Weimer

August 25, 2007

Distribution Details
Developed with Igor Pro Version: 6.0.2
Procedure Files: udStFiLrXML and udStFiLrXML.lcl
Demos: none (uses SimpleStandardLoaderPanelDemo)
Experiments: none XOPS: none Help Files: none
Requires Packages: udFLStandardFunctions and udFLStandardStructure

Abstract

The udStFiLrXML procedure is designed to read an XML file intoIgor Pro according
to rules in a user-generated XSL file. Values for a given item are stored in a string wave
as keyword=value sequences, in waves, or in a text matrix.

This file loader procedure is compliant with proposed standards for user designed
file loaders, and it requires the procedures developed for such file loaders. It can be
used directly as a “plug-in” module” for the simple file loader panel or other standards
compliant file loader user interfaces.

Applications for this file loader include Igor Pro procedures that need access to
databases of numeric or string values that are provided in XML format. An example
XLS that reads in values (atomic number, density, electron configuration, ...) for 112
elements from an XML periodic table (obtained directly fromthe Web) is provided. An
additional XLS that reads row-based intensity data from an x-ray diffraction system is
also given.

This document was generated using LATEX

Contents
1 Summary 1

2 Setup 1
2.1 Requirements. 1
2.2 Package Contents. 1
2.3 Installation . 2

3 Use 3
3.1 File Formats. 3

3.1.1 XML File . 3
3.1.2 XSL File . 5

3.2 Storage Options. 8
3.2.1 Keyword=Value Lists. 8
3.2.2 Waves. 9
3.2.3 Text-Matrix. 10
3.2.4 Row Waves. 11

3.3 Standard User Interface Modes. 12
3.4 Localization. 13
3.5 For Programmers. 14

4 Package Contents 16
4.1 Folder . 16

4.1.1 Parameters. 16
4.1.2 XSL Sub-Folders. 16

4.2 Structures. 17
4.3 Procedures. 17

5 Known Limitations 18

6 Acknowledgments 19

7 Contact 19

8 Legalize 19

9 Version History 20

i

1 Summary

The udStFiLrXML procedure is designed to read an XML file intoIgor Pro according
to rules in a user-generated XSL file. Values for a given item are stored in a string wave
as keyword=value sequences or in waves.

Applications include Igor Pro procedures that need access to databases of numeric
or string values that are otherwise provided in XML format.

An example experiment that reads in values (atomic number, density, electron con-
figuration, ...) for 112 elements from an XML periodic table (obtained directly from the
Web) is provided.

2 Setup

2.1 Requirements

This procedure has only been tested on Igor Pro 6.0 and is defined with a minimum
requirement of Igor Pro 6.0. Please see the section Known Limitations in section5 to
learn how this procedure may be used with Igor Pro 5.0.

2.2 Package Contents

The procedure is provided in a ZIP archive. Unpacking the archive will reveal the
primary (root) folder udStFiLrXMLN, where N is the version number. The directory
structure inside this folder is shown below.

1

data0
This directory only contains an XSL translation document. It is to be used with the
XML file in the data1 directory.

data1
This directory contains XML data from a periodic table of elements and three XSL files
to show how to load the data in different formats.

data2
This directory contains XML data from an x-ray diffraction system and an XSL file to
show how to load the row of intensity data.

doc
This directory contains the documentation (this document)and an XML version history.

udStFiLrXML
This directory contains two files. The file udStFiLrXML.ipf contains the code to read,
parse, and store the XML data into Igor Pro. The file udStFiLrXML.lcl.ipf contains
dialog and alert strings in different languages.

2.3 Installation

The procedure can be installed in one of two ways. In both cases, the entire directory
udStFiLrXML is to be copied (or moved) to a specific location.

• To have the file loader available every time you start Igor Pro, move or copy the
udStFiLrXML directory to theIgor Procedures directory of your local instal-
lation of Igor Pro.

• To have the file loader available only when you wish to includeit, first move
or copy theudStFiLrXML directory to theUser Procedures directory of your
local installation of Igor Pro. Then, when you wish to include theudStFiLrXML
procedure in a specific experiment, open the Macros window while in Igor Pro
and put the line

#include "udStFiLrXML"

somewhere directly after the#pragma rtGlobals=1 directive that appears in
this window.

2

This procedure can be used directly as a “plug-in” to the Simple Standard Loader
Panel Demo, therefore no stand-alone experiment is provided as a user interface.

3 Use

The udStFiLrXML procedure can be used in one of two ways. It can be integrated
into more complex routines as a file loader module. An exampleof this is where the
procedure reads preference settings for a package that are stored externally in an XML
database. In this case, the user is typically unaware of and has no direct interaction
with the operation of the udStFiLrXML loader–it is just a functioning part of the larger
package.

Alternatively, theudStFiLrXML procedure may be used as the primary method to
load data in XML databases into Igor Pro for further processing. In this case, the user
is typically prompted to select the data file(s) to load.

3.1 File Formats

However this procedure is used, a basic familiarity with XMLand XSL is essential.
The discussion below is no substitute for reading on-line orother references about
the formats. In fact, I strongly recommend that anyone who uses this procedure in
any way become far more familiar with XML and XSL. The upcoming versions of the
udStFiLrXML procedure will rely directly on XSLT engines that are built-in to the com-
puter OS (MacOS or WinXX). All translations will then be directly dependent on how
conversant you are with XML/XSL transformations, and such discussion is well beyond
the scope of this document.

3.1.1 XML File

The XML file should have the basic format shown below. The (optional) lines are part
of well-structured XSL files and should be included for future compatibility. They are
not recognized by Ver. 2.12 of the Igor Pro procedure, however future versions of the
procedure are likely to require them. All unmarked lines arerequired for the current
version of this procedure.

3

<?xml version="1.0"?> (optional)
<DATABASE> (optional)

<ELEMENT>

<VALUE1>value1</VALUE1>

<VALUE2>value2</VALUE2>

<VALUE3>value3</VALUE3>

. . .

<VALUEN>valueN</VALUEN>

</ELEMENT>

<ELEMENT>

. . .

</ELEMENT>

. . .

</DATABASE> (optional)

DATABASE
The name of the XML database. For example, the Periodic TableXML file has a
DATABASE name of PeriodicTable.

ELEMENT
The name of the elements within the database. For example, all ELEMENTS within the
Periodic Table XML file have the name ATOM.

VALUEj
The name of thejth property of the given ELEMENT within the DATABASE. Within
the Periodic Table XML file for example, ATOMS have VALUEs such as SYMBOL,
NAME, ATOMIC_WEIGHT, DENSITY, and ELECTRONIC_CONFIGURATION.

valuej
The value (numeric or string) given to thejth VALUE of the given ELEMENT. For
example, for one ELEMENT in the Periodic Table XML file, a SYMBOL value Au
is associated with the NAME value Gold. Thevalue j parameter is never enclosed in
quotes, regardless of whether it is a string value or a numeric value.
Multilevel nesting to indicate properties of VALUEs is not supported in Ver. 2.12.

One variation of the above XML file format is permitted. The VALUEj names can
include UNITS in the following manner:

4

<VALUEj UNITS="unitsj">valuej</VALUEj>

UNITS
The designation indicating the VALUEj has units.

unitsj
The units associated withvalue j. The units must be enclosed in quotations!

An alternative form of data storage in an XML file is shown by the section below.

<?xml version="1.0"?> (optional)
<DATABASE> (optional)

<ELEMENT>

<NAME>name1</NAME>

<VALUES>value1 value2 value3 ... valueN</VALUES>

</ELEMENT>

<ELEMENT>

<NAME>name2</NAME>

<VALUES>value1 value2 value3 ... valueN</VALUES>

. . .

</ELEMENT>

. . .

</DATABASE> (optional)

In the above format, the data is stored as a row within one element of the XML
database. The data values may be numeric or text. They may be separated by demar-
cations other than spaces, however this version of the procedure only recognizes spaces
as separators.

3.1.2 XSL File

The basic XSL file should have the format shown below. The (optional) lines are part of
well-structured XSL files and should be included for future compatibility. They are not
recognized by Ver. 2.12 of the Igor Pro procedure. All unmarked lines are considered
to be required in the format specified (unless otherwise noted).

5

<?xml version="1.0" encoding="UTF-8"?> (optional)
<?igorpro version=VERSION input-as=METHOD?> (REQUIRED!)
<xsl:stylesheet xmlns:xsl="..." version="1.0"> (optional)

<xsl:output method="text" /> (optional)
<xsl:template match="//ELEMENT">

<xsl:value-of select="VALUE1"/>;

<xsl:value-of select="VALUE3"/>;

<xsl:value-of select="VALUE2"/>;

. . .

<xsl:value-of select="VALUEM"/>;

</xsl:template> (optional)
</xsl:stylesheet> (optional)

VERSION
A string version number. As of 2.12, this value should be"1.03" (see the known
limitations in Section5).

METHOD
A string that is either"keyword-list", "waves", or "text-matrix". This defines
how thevalue j values will be stored when input into Igor Pro.

ELEMENT
The same name that appears in the XML file.

VALUEj
The names of properties that you want to read into Igor Pro from the XML file. Note,
in the XSL file, they are not necessarily listed in the order they appear in the XML file.
Three rules apply to theVALUEj lines.

• The capitalization of VALUE names in the XSL should follow exactly with those
given in the XML. See below for instructions on how to store values with other
VALUE tags, for example to remove capitalization.

• The first VALUE appearing in the XSL file will be used as the default name of
the keyword=value string wave when the values are stored as keyword-lists.

• The line must end in a semicolon “;” unless followed by a unit designation (ex-
plained below).

The basic XSL file can be modified in three ways.

6

• STORAGE NAME

To indicate that a different name should be used to store a particular value, pre-
cede the<xsl:value-of ... >; line with the designation

namej = <xsl:value-of select="VALUEj"/>;

Under default conditions in keyword=value lists, the name of value j will be
VALUEj. The above coding in the XSL replacesVALUEj= with namej= as the
storage method. This is used for example to store ATOMIC_WEIGHT from the
Periodic Table XML file asAM in the keyword=value list within Igor Pro.

Thenamej designation will also be used to name the waves that store thevalues.
For example, the line below in the XSL

rate = <xsl:value-of select="Reaction_Rate"/>;

is a directive to store all values ofReaction_Rate from the XML file into an
Igor Pro wave named “rate”.

Finally, when storing as text-matrix, this method will alsochange the designation
of the storage fromVALUEj to namej.

• UNITS

To indicate a different set of units to use for a givenvalue j, include the designa-
tion after the<xsl:value-of ...>; line as

<xsl:value-of select="VALUEj"/>;"new units"

Under default conditions, theunits given in the XML file will be applied. The
above use will override the units in the XML file. This is used for example to
designation that ATOMIC_WEIGHT from the Periodic Table XMLfile is to be
stored in units of “kg/mol” rather than “g/mol”.

The"new units" designation must follow after thevalue-of ... selection and
after the required semicolon. The new units must also be enclosed in quotations.

• ALGEBRAIC MANIPULATIONS

The XSL parse routine within udStFiLrXML supports the interpretation of simple
algebraic coding to indicate manipulation of numeric values is to occur before
storing. Examples of such formating are provided as illustration.

TK = 273.15 + <xsl:value-of select="temperature"/>;"K"

This line directs the procedure to add 273.15 to everyvalue of temperature and
store them asTK with units of “K”.

7

lnrate = ln(<xsl:value-of select="REACTION_RATE"/>);

This line takes the natural log of everyvalue for REACTION_RATE and stores them
aslnrate.

As of Vers. 2.12, algebraic manipulations are only supported using onevalue per
line in the XSL file.

3.2 Storage Options

The values from the XML can be stored in Igor Pro as keyword=value string lists, as
waves, or as a text-matrix. An option is also available to store row-type data as waves.

3.2.1 Keyword=Value Lists

To store the XML data in this format, include the line below within the XSL file.

<?xmligorpro version="1.03" input-as="keyword-list"?>

The name of the string waves will be obtained from the name of the first ELEMENT
within the XSL file (programmers have an option to override this behavior).

The keyword=value string wave will have the format

name1=value1,units1; name2=value2,units2;...nameN=valueN,unitsN;

where eachname j is stored in the order that it appears in the XSL file. When avalue j
has no units, it will be stored asnamej=valuej; only.

All values within the string wave are strings, even when the original value within
the XML file can be considered a numeric value.

All numeric values stored within the keyword=value list arepre-processed accord-
ing to the algebraic manipulation rules set in the XSL beforebeing converted and stored
in the keyword=value list.

The firstvalue-of within the XSL file establishes the name of the string wave. For
the lines below, the names of the string waves will be theNAME value of an ELEMENT.

<xsl:value-of select="NAME"/>; (first value-of line)
<xsl:value-of select="SYMBOL"/>;

8

By comparison, for the lines below, the names of the string waves will be theSYMBOL
value of an ELEMENT.

<xsl:value-of select="SYMBOL"/>; (first value-of line)
<xsl:value-of select="NAME"/>;

By default, the first keyword=value is not stored in the string wave. To include it
within the string, duplicate the line as shown below.

<xsl:value-of select="SYMBOL"/>; (first value-of line)
<xsl:value-of select="SYMBOL"/>; (repeated here to include SYMBOL in list)
<xsl:value-of select="NAME"/>;

3.2.2 Waves

To store the XML data in this format, include the line below within the XSL file.

<?igorpro version="1.03" input-as="waves"?>

EveryVALUEj within the XSL will create a new wave with that name. Thevalue j
values will be stored sequentially by ELEMENT within the wave.

The procedure recognizes the difference between text and numeric values. Text
values will be stored in string waves, and numeric values in (numeric) waves (as floats).

Algebraic manipulation will be done prior to storing a valueas demanded within the
XSL file.

The units of a givenVALUEj will be stored in a string variable calledVALUEjUNITS.
For example, the line below will store allATOMIC_WEIGHT values in a numeric wave
namedAM. The values will have been pre-multiplied by 0.001 prior to storage. A string
variable AMUNITS will contain the string “kg/mol”.

AM = 0.001*<xsl:value-of select="ATOMIC_WEIGHT"/>;"kg/mol"

9

3.2.3 Text-Matrix

To store the XML data in this format, include the line below within the XSL file.

<?igorpro version="1.03" input-as="text-matrix"?>

The matrix will be filled along rows, columns, and layers. Following conventions
in Igor Pro, the indices along the rows, columns, and layers are zero based (the first
index is zero). The matrix will have dimensions of [N][3][M], whereN is the number
of ELEMENT segments in the XML andM is the number ofvalue-of lines in the XSL
(including the first one). In the columns, index zero will have the name of the value
stored, index one the value, and index two the units. A representation of this is shown
below.

EL
EM
EN
TS value-of selections

2: unitsj

1: valuej

0: namej

The selection given in the firstvalue-of line in the XSL will define the name of
the text matrix. Thevaluej obtained from the XML for that selection will be the first
(index = zero) value of each row.

As a specific example, the sequentialvalue-of ... lines below will create the
matrix named “symbol” that follows (showing only the first two elements for brevity).

symbol=<xsl:value-of select="SYMBOL"/>;

AM = 0.001*<xsl:value-of select="ATOMIC_WEIGHT"/>;"kg/mol"

ro = <xsl:value-of select="ATOMIC_RADIUS"/>;"Angstroms"

den = 0.001*<xsl:value-of select="DENSITY"/>;"kg/m3"

10

Third Layer
units kg/mol Angstroms kg/m3
units kg/mol Angstroms kg/m3

Second Layer
value 0.0227 1.88 10.07
value 0.02698154 1.43 2.7

First Layer
Ac AM ro den
Al AM ro den

The following (string/text) results would be obtained for the contents of the matrix
symbol:

symbol[0][0][0] = Ac
symbol[0][0][1] = value
symbol[0][0][2] = units
symbol[1][0][0] = Al
symbol[1][0][1] = value
symbol[0][1][0] = AM
symbol[0][1][1] = 0.0227
symbol[0][1][2] = kg/mol
symbol[0][2][0] = ro
symbol[0][2][2] = Angstroms

Any value that is blank or missing in the XML file is stored as a blank cell or cells
in the matrix.

3.2.4 Row Waves

This storage format is really a translation operation rather than a new storage method.
When the XML data appear as a row vector within one element of the XML database,
this operation will pull out each data value as an element in awave.

To use this translation/storage option, include the following line in the XSL:

<?igorpro version="1.03" input-as="row-waves"?>

The translation/storage is illustrated with the example below.

11

XML File

<data>

<values>64 56 78 92 45 36 33 48</values>

</data>

XSL File

<xsl:template match="//data">

mydata = <xsl:value-of select="values"/>;

Igor Pro Storage

wave mydata

... type: numeric

... number of points: 8

The procedure only recognizes spaces as separators betweenrow delimited values.
The procedure recognizes the difference between text and numeric values. Text values
will be stored in string waves, and numeric values in (numeric) waves (as floats).

Algebraic manipulation will be done prior to storing a valueas demanded within the
XSL file.

The units of a givenVALUEj will be stored in a string variable calledVALUEjUNITS.
For example, the line below will store allATOMIC_WEIGHT values in a numeric wave
namedAM. The values will have been pre-multiplied by 0.001 prior to storage.

3.3 Standard User Interface Modes

As a standardized file loader,udStFiLrXML has three modes of operation: Auto, Auto-
XML, and Manual. Further details of these modes are presented again in the section
For Programmers.

Auto Mode
In Auto mode, the procedure must be provided with all information needed to automat-
ically load and parse the files. In particular, this includesthe file names for the XSL

12

and XML files. This mode is typically used by programmers who wish to integrate the
routine into a larger package.

Auto-XML Mode
In Auto-XML mode, the procedure will present a dialog box requesting the user to
select an XSL file. The procedure then searches in the same directory for an XML file
with the same name.

As an example, the following two files can be processed in thismode:

mydata.xsl

mydata.xml

At the first dialog prompt, the user should select themydata.xsl file. The routine
will automatically find themydata.xml file and process it.

Both files must be in the same directory!

Manual Mode
In Manual mode, the procedure will present a dialog box requesting the user to select
an XSL file followed by a dialog box requesting the user to select an XML file. Both
files can be in separate directories.

You can test all three of these modes in the Simple Standard Loader Panel Demo
using the data provided in the directoriesdata0, data1, anddata2.

3.4 Localization

You can change the dialog and alert texts to a different language. This is done by
modifying theudStFiLrXML.lcl.ipf file.

The file starts with a compiler directive that is a definition of the current language.
Below this are the language specific alert and dialog strings. A subset of the file is
shown below.

#define ENGLISH

#ifdef ENGLISH

StrConstant alert00 = "..."

StrConstant alert01 = "..."

StrConstant alert01a = "..."

StrConstant alert02 = "..."

13

. . .

#endif

To change the language, first confirm that a command block#ifdef ... #endif

exists for the language you want to use. Then, change the language after the#define
directive to that language. Please use ALL UPPER CASE LETTERS when doing this!

The line given below changes the language from English to German, assuming the
block of code#ifdef DEUTSCH ... #endif exists to define the strings in German.

#define DEUTSCH

To create a new language localization, copy the entire existing block of code found
between#ifdef ENGLISH ... #endif. Paste this at the bottom of the localization
file. Change the#ifdef ENGLISH to reflect the language you wish to define. Then,
change all of the string text (between quotation marks) to reflect the proper translation
of the alert and dialog strings. Do not change the names of thealert or dialog string
constants when doing this.

I encourage anyone who develops a new language localizationfor this procedure to
forward it to me so that I can post it for others to use.

3.5 For Programmers

Programmers who wish to use the procedure directly in their own Igor Pro routines are
encouraged to review the guidelines below. Only one point oftop-level access exists.

Function udStFiLrXML(udFL)
This function is accessed according to the rules defined in the proposed standard docu-
ment. The relevant parameters are outlined below.

Descriptors

udFL.mimetype = "TEXT"

udFL.extensions = ".xsl;.xml;"

udFL.procModes = "Auto;Auto XML;Manual;"

udFL.itemsType = 14

udFL.itemsDim[0]=0

udFL.setNames=1

14

When queried withudFL.itemsType set, the procedure also returns the following:

2

udFL.Dim[0] = 1

4

udFL.Dim[0] = 99

8

udFL.Dim[0] = -1

udFL.Dim[1] = -1

udFL.Dim[2] = -1

udFL.Dim[3] = 0

Inputs
The inputs will control the loader in the following manner:

udFL.userCtrl ... sets processing mode

udFL.userData ... used during programming (see below)

udFL.reportCtrl ... used only sparingly

The “Silent” mode of control and the “Normal” mode of controlare the same. The
“Verbose” mode of control keeps the parsing notebook resident after it has been used
and reports progress of the loading, parsing, and saving operations throughout.

Localizers
The inputs will control the loader in the following manner:

udFL.pathStr ... according to standards

udFL.fileList ... according to standards

udFL.returnCtrl ... currently unused

In “Auto” mode, the values ofudFL.pathStr andudFL.fileList can be passed
in one of two ways. In the first case,udFL.pathStr should contain the full path to two
files in the same directory. Correspondingly,udFL.fileList should contain just the
names of the two files, with the XSL file first and the XML file second in the list. In
the second method, the value ofudFL.pathStr should be passed empty (as""), and
udFL.fileList should contain the full path to the XSL file followed by the full path
to the XML file.

15

Returns
The file loader will return -1 on a fatal error. It currently has its a mixture of its own
internal alerts and standardized alerts viaudFL.errCode andudFL.errMsg.

4 Package Contents

4.1 Folder

The folder for this package is calledXML2IgorPro (I tend to follow a philosophy of
avoiding liberal names in setting up package folders withinIgor Pro).

The package installs itself as root:Packages:XML2IgorPro(following conventions
suggested by WaveMetrics).

The package folder contains two parameters and any number ofsub-folders.

4.1.1 Parameters

Parameter Type Use
currXMLData string the (compressed) name of the current XML data file
currXSLData string the (compressed) name of the current XSL data file

4.1.2 XSL Sub-Folders

Every set of XSL/XML database values is stored in Igor Pro in its own folder located
directly from the root level. For every one of these folders,a corresponding folder
is created in theXML2IgorPro folder. The name of that folder isdbnameXSL where
dbname is the name of the Igor Pro folder where the data is stored. Forexample,
when values are stored in root:PeriodicTable, the parameters in the Igor Pro folder
root:Packages:XML2IgorPro:PeriodicTableXSL define how they were derived.

Each XSL folder has the parameters listed below, as obtainedfrom parsing the XSL.

Parameter Type Use
eKey string the KEY obtained from match="//KEY"
f irstKey string the KEY in the first<xsl:value-of select=...> line
sunits text wave the ordered list of any units for all KEYS
scmd text wave the ordered list of commands to EXECUTE for each KEY
sname text wave the ordered list of names to store all KEYs
ename text wave the ordered list of names that define all KEYs

16

The text waves will have as many points as the number of elements that are directed
by the XSL file to be input from the XML database.

4.2 Structures

The procedure uses one “global” structure and one static structure.

• udFL - (STRUCTURE)
This is a reference to the global standard structureudFLStandardStructure

• xip - (STRUCTURE)
This is a reference to a static structurexml2igorproglobals that contains

xip.version ... the version of the routines

xip.xslversionsupported ... the version of XSL supported

4.3 Procedures

The procedure contains the functions listed below. Those that can be called from outside
the procedure are listed with←.

Function udStFiLrXML(udFL) ←

This is the primary point of entry to the file loader.

Example:
udStFiLrXML(udFL)

Static Function udFLXMLInitialize(udFL)
This is called when the file loader is initialized.

Static Function udFLXMLQuery(udFL)
This is called when the file loader is queried.

Static Function initParseXML()
This function is called the first time the procedureinputXSLFile(...) is invoked to
set up the package folder and globals.

17

Static Function readXSLFile(udFL)
This function reads the XSL file into a (hidden) notebook.

Static Function parseXSLFile(udFL)
This function parses the XSL file (from within the notebook).

Static Function readXMLFile(udFL)
This function reads the XML file into a (hidden) notebook. It passesudFL.userData
as the optionalKEY for keyword=value parsing.

Static Function parseXMLFile(udFL)
This function parses the XML file (from within the notebook).It receives theudFL.userData
as the optionalKEY for keyword=value parsing.

Static Function/S parseXMLValue(lstr,xhow)
This function parses the lines in the notebook.

• lstr This is the string line to be parsed.

• xhow This is a variable defining how to parse the line. A value 0 means to parse
for the UNITS (if any), a value 1 means to return the value after collapsingall
spaces, a value 2 means to return the value with spaces, and a value 3 means to
returnlstr after replacing all spaces with semicolons";".

5 Known Limitations

• The procedures can likely be used with Igor Pro 5.0 by making the following
modifications:

– First, put the udStFiLrXML folder in theUser Procedures folder of Igor
Pro. This modification will NOT work when the udStFiLrXML folder is in
theIgor Procedures folder!

– Open the udStFiLrXML.ipf file within Igor Pro.

– Change the#pragma IgorVersion=6.0 to #pragma IgorVersion=5.0

– Change the line that states#include ":udStFiLrXML.lcl" to read ex-
actly as#include "udStFiLrXML.lcl" (remove the colon before the file
name).

18

– Save the procedure file.

• To use the stand-alone procedure when theudStFiLrXML folder is placed in the
Igor Procedures directory, comment out the line#include "udStFiLrXML"

in the procedure window of the stand-alone experiment.

• Please pay attention to theigorpro version number you give in your XSL. This
will assure that your data is handled by the correct version of the udStFiLrXML

procedure file.

• Simple algebraic manipulations on one value are supported.To perform compli-
cated manipulations, load the data as waves and work directly within Igor Pro.

• The procedure works carefully to remove spaces in the XSL andXML file names
(to avoid the need for liberal string quoting in Igor Pro). Itmay or may not be able
to read KEY names with spaces - no testing of this has been doneas of vers. 2.12.

• The procedure parses the XSL and XML by reading them into a notebook. Alter-
native methods using XSLT engines are to be included in future versions.

6 Acknowledgments

Many thanks go to Shaun Roe who was instrumental in establishing the proper format
for the XSL file in the transition from 1.12 to 2.0.

Thanks to Luc Ortega for sending the XRD data as a motivation to create the row-
wave method of input.

7 Contact

Suggestions, bug reports, and feature requests should be posted on the Igor Exchange
Web site. I will be using it exclusively to track this project.

8 Legalize

This software is free to use as per the terms of any other publicly released software.
Enjoy!

19

9 Version History

An XML file outlining the version history is provided in the docs folder.

2.12r (2007.08.25)
- changed name from xml2igorpro to udStFiLr XML to indicate standard compliance
(version 2.04r is technically the last version of xml2igorpro)
- included udFL.setNames=1 parameter in initialization
- fixed an incorrect test ofV_flag instead ofS_filenames after Open dialog box

2.11r (2007.08.22)
- verbose mode prints status at key points during processing
- file loader returns the items list and number of items
- re-distributed coding in the initialize and query segments
- fixed a missing alert code problem that prevented compiling
- open dialogs now check only for file extensions exclusive ofmimetype
- itemsType now conform to BIT-wise values

2.10r (2007.08.20)
- rewrote the code to conform to the working proposal on standardizing file loaders
- checks for proper values of the optional KEY
- added row-wave as storage option
- require <?igorpro version =1.03 (to read as row-wave)

2.04r (2007.06.05)
- changed <?xmligorpro version to <?igorpro version (in preparation for use of xslt en-
gines)
-added localization file to have dialogs and alerts in different languages
- put file and localization file in a directory (director structure changed accordingly)
- added text-matrix as storage option
- require <?igorpro version =1.02 (to read as text-matrix)
- request (not require) that all lines in XSL end in ";" or in text (units string) (in prepa-
ration for use of xslt engines)

20

2.03r (2007.05.07)
- added optionalfilepath parameters toinputXSLFile(...) andinputXMLFile(...)
- added procedure information to the Users Guide
- updated Known Limitations information in the Users Guide

2.02b0 (2007.05.03)
- significant code changes to improve speed and reliability of parsing XML
- moved coding for how=1 in parseXML to its proper location
- missing <KEY></KEY> lines in XML are now stored as "keyword=" or as blank
values in wave (you must use version"1.01" in the<?xmligorpro ...> header!)
- return 0 cases in parseXML now kill notebook and reset datafolder
- added Package Folder information to the Users Guide
- added Known Limitations information to the Users Guide

2.01b1 (2007.05.02)
- fixed ordering of lines in XSL and clarified format requirements in the Users Guide

2.01b0 (2007.04.30) (not released)
- used an<?xmligorpro version="..." input-as="..."?> directive to control
versioning of the xml parsing and input directives to the parser
- removed the<xsl:parameter ...> directive as a way to define the input method
- procedure now checks for compatible XML version information in the XSL

2.00b0 (2007.04.29) (not released)
- major change in format of XSL file (therefore the major version number change)
- cleaned up hidden notebook and other junk after abort of XSLor XML input
- can now input XML data to waves
- only one keyword=value input type supported
- can now define pre-processing of numeric values using algebraic formula in XSL
- unit designations stored as <xsl:value-of ...>; “UNITS”
- bug fixes and code revisions

21

1.12b0 (2007.04.24)
- changed versioning to include letter (a, b, r) and minor number
- made pragma rtGlobals=1
- put Static Function states on internal functions
- can use KEY as name for storage wave (default is “name”)
- has how=0, how=1, and how=2 storage states
- reads UNITS in XLM file
- code changes and revisions

1.11
- changed names of files and folder from ParseXML to XML2IgorPro
- first public posting

1.10
- added "how" switch to inputXMLFile() function for future use (currently unused op-
tion) (not posted)

1.00 - first development (not posted)

22

	Summary
	Setup
	Requirements
	Package Contents
	Installation

	Use
	File Formats
	XML File
	XSL File

	Storage Options
	Keyword=Value Lists
	Waves
	Text-Matrix
	Row Waves

	Standard User Interface Modes
	Localization
	For Programmers

	Package Contents
	Folder
	Parameters
	XSL Sub-Folders

	Structures
	Procedures

	Known Limitations
	Acknowledgments
	Contact
	Legalize
	Version History

