
Disclaimer: I am a chemist. I don’t know much about video formats or
media encoders. My FFmpeg knowledge consists of the bare minimum that I
needed to make videos that didn’t look like hot garbage. Take most things in
this document with a very large grain of salt, and if the FFmpeg manual or some
other part of the internet says I’m wrong, don’t be surprised if I’m wrong. The
Igor tool also only does the bare minimum needed to make good videos. There
is much room for improvement, but that’s not really what I am paid to do.

Contents

1 Background 1

2 Installing FFmpeg 1
2.1 Windows . 2
2.2 macOS . 2
2.3 Shortcuts . 2
2.4 Updating . 3

3 Making video frames 3

4 Making the video 4
4.1 Making the panel . 4
4.2 Input parameters . 4
4.3 Calling FFmpeg with ExecuteScriptText 5
4.4 Exif data . 5

5 Changing the video speed 6

1 Background
Igor has functions to make videos (NewMovie, AddMovieFrame, etc), but the videos

usually are pixelated and the file size is huge. The best way that I have found to make
videos is to use Igor to make the individual frames and then use a program called FFmpeg

to convert the frames into a movie. The movies made by this method will look way better
than the movies made with Igor commands, and the file size will not be much larger than
the size of an individual frame.

FFmpeg is a pretty widely used program, and you can find tons of information about how
to use it online. If you run into issues search online for your question.

FFmpeg is command line only. There is a free program called OpenShot that has a GUI
interface, but I have never used it. It seems to use FFmpeg for many things.

2 Installing FFmpeg
FFmpeg can be downloaded from here: https://ffmpeg.org/download.html. I generally

use the Release build. I’ve also gotten the Essentials instead of the full build. I usually
download the “Release build” (the stable version with a “normal” looking version number).

Last modified 28 September 2023 1 Table of Contents

https://ffmpeg.org/download.html

The Igor script will need to know the path to FFmpeg. There are two paths in the ipf (in
Igor path format), one for Windows and the other for macOS. If you install the program in
the same place that I did, then you won’t have to change the ipf. If you install the program
somewhere else, you will need to change the string constants at the top of the ipf to the
correct paths for your setup. Make sure to change the correct string constant for the OS you
are using, and no matter the operating system use Mac style separators (colons).

2.1 Windows
On Windows, I manually installed the FFmpeg folder in C. I downloaded the zipped file

containing the release build, unzipped it, renamed the folder “ffmpeg,” and moved it to C.
The path to the FFmpeg executable is then C:\ffmpeg\bin\ffmpeg.

FFmpeg location on Win 10

2.2 macOS
For Macs, the preferred way apparently is to use HomeBrew. I don’t use the admin

account on my Mac for everyday use, and I ran into some issues installing HomeBrew as
a non-admin user. I wasn’t in the mood to find the solution to this, so I just downloaded
a static build and installed it in usr/local/bin. To get to that folder, I opened Finder,
pressed Command+Shift+G, and entered /usr/local/bin into the dialog box. I needed admin
permission to install there, but that wasn’t an issue.

2.3 Shortcuts
Once you have installed FFmpeg, if you want you can add it to your environment variables

(Windows) or bash profile (Mac). If you do this, then you can just type FFmpeg into the
command prompt, and the operating system will know what to do with that command. If
FFmpeg has not been added to the environment variables/bash profile, you can still call it
from the command line, but you will need to give the full path. You can find instructions for
doing this in various places online (Windows, macOS). The ipf uses the full path to FFmpeg,
so you do not need to do this for the ipf to work properly.

FFmpeg (to my knowledge) is command line only, and if you try to run the executable by
double clicking on it you might not see anything. If you want to verify that it was installed
correctly, type “ffmpeg” into the command prompt (or enter the full path to the executable
if you haven’t added it to your environment variables). If everything was installed correctly
some information about the version you have installed and the various plugins should get
printed to the terminal.

Last modified 28 September 2023 2 Table of Contents

C:\ffmpeg\bin\ffmpeg
https://stackoverflow.com/questions/44272416/how-to-add-a-folder-to-path-environment-variable-in-windows-10-with-screensho
https://stackoverflow.com/questions/60228738/how-do-i-update-the-path-in-bash-profile-on-osx

2.4 Updating
To update FFmpeg on Windows, simply delete, rename, or move the old folder, download

the new version, and install it as before. I think I did something similar on macOS.

3 Making video frames
To make the videos, you will want to create a series of images that FFmpeg will then

stitch together to make the movie. The names of the images should have an index at the
end that increases by 1 for each new image. There is a command in FFmpeg that you
can pass that doesn’t require the indices to increase by 1 (-pattern_type glob), but it
apparently doesn’t work on Windows, and I’ve never tested it. The image names should be
of the form [Base name]_[index], where the index is padded with zeros so the number of
characters is always the same. Sample code is shown below. Example image names would
be Image_000001, Image_000002, Image_000003. I have not tried non-padded indices (e.g.
1, 2 , 3, instead of 000001, 000002, 000003). I also use a large number of index digits (e.g. 6
or 8) so there is no danger of running out of space.

Sample code for making the frames

When creating the frames, you want things that are the same in every frame (axes, axis
labels, legends, color scales, etc) to not move. If they move between frames then it will look
bad when you create the video. The easiest way to get around this is to make sure you
provide fixed numbers for any setting that can also take Auto (such as the graph and margin

Last modified 28 September 2023 3 Table of Contents

sizes). If you have something that does change, such as a time, you might want to use a
monospaced font such as Consolas.

Don’t use Auto for any of these parameters in Modify Graph

The ipf has some commands that assume that your images are pngs, so unless you want
to get into the code I would stick with pngs. The video that gets created is an mp4. FFmpeg
can make almost any other format of video you want, but I hardcoded mp4 for convenience.
PNG images can be transparent, but this does not translate into the video. I haven’t found
a way to make videos transparent. Jpg is a lossy format, so you should avoid using this for
making the frames.

There cannot be anything else in the images folder except the images. I’m not sure why
you would do this, but if you do, the code will probably run into some issues.

4 Making the video

4.1 Making the panel
Once you have made the frames, load the ipf and run the function Video_Tools_Make_Panel

either from the command line or from the “Useful Tools” menu (Useful Tools→Video Tools→Make
Panel). This creates a little GUI panel, as shown below.

Panel for making the vidoes

4.2 Input parameters
Browse to the folder that contains the images (“Images Folder Path”). If your images

have nicely formatted names, the “Images Name” box will fill in. Select the folder to hold

Last modified 28 September 2023 4 Table of Contents

the completed video (“Video Folder Path”), and a name for the video. The default framerate
(15 fps) works well, though I’ve used lower ones to slow movies down. The file type of mp4
is hardcoded in the ipf, but can be changed if desired.

FFmpeg has a lot of input parameters that you can set to fine tune things, but for what
I’ve used it for (short videos in Powerpoint) the only parameter that I’ve really needed to
change is the Constant Rate Factor (CRF). The default CRF has worked well, but you can
change it if the file size is large or the quality is low. The other thing you can change is the
encoder (the code that converts the static images into movies). FFmpeg has access to lots of
encoders, but the only ones the Igor code currently supports are H.264 and H.265. H.265
takes longer, but the file size is generally smaller for the same image quality as H.264. For
example, I made a movie using 1780 frames, each of which was ∼1.7 MB, for a total size of
2.9 GB. With H.264 encoding and a CRF of 24 the video file size was ∼20 MB. With H.265
and a CRF of 28 the file size was ∼15 MB. The video quality looked essentially the same.
H.265 is slower, but the speed difference really wasn’t a huge issue, and I liked having smaller
video files. For a very simple or small video H.264 might give a smaller file, but for anything
complex H.265 is the way to go. I tried AV1, and it was super slow (orders of magnitude
slower than H.265). This might have been a function of the hardware and version of FFmpeg
that I was using, and this will probably change in the future.

There is an option to change the encoder speed, which can also improve the compression
ratio at the expense of speed, but right now this is not set, so the default of medium is used.
In my tests I didn’t see much improvement with different preset speeds, and the difference
in time was pretty substantial.

If you want to know more about the parameters mentioned above, then read the FFmpeg

documentation. It’s generally pretty good. You can also find lots of other resources online
(e.g. StackExchange).

By default FFmpeg uses all the available threads on your computer. There is an option
to specify the number of threads that get used in case you don’t want to overstress your
computer.

4.3 Calling FFmpeg with ExecuteScriptText
After you click the “Make Video” button, Igor will use a command called Execute-

ScriptText to create the video. On Windows, the code first creates a batch file with the
proper command and then uses ExecuteScriptText to execute the batch file. The batch
file is in the same folder as the video and will be deleted after making the movie, though
there is an option to keep the batch file if you run into issues. On a Mac Igor passes the
command directly to AppleScript (no batch file), which is why the commands are a little
different. If everything was entered correctly, FFmpeg should run and create a nice video.
The command that was executed will show up in the box below the “Make Video” button
if you run into issues and want to call the commands from the terminal prompt.

4.4 Exif data
Information about the video will get stored in the Comment section of the video’s Exif

data. You can use FFmpeg to read this data or a separate (and free and cross-platform)
program called ExifTool. ExifTool can also be called from Igor using ExecuteScriptText
and the appropriate commands. The experiment that was used to create the movie as well

Last modified 28 September 2023 5 Table of Contents

https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.265
https://trac.ffmpeg.org/wiki/Encode/AV1
https://exiftool.org/

as the path to the image source folder will be stored in the Exif data in case you lose track
of how you made the movie.

5 Changing the video speed
The second tab of the panel has controls for changing the speed of an already existing

video. I’ve used

-filter:v "setpts=X*PTS"

for this, where “X” is the factor by which you want to slow down the movie. More details
are given here: https://trac.FFmpeg.org/wiki/How%20to%20speed%20up%20/%20slow%

20down%20a%20video. The source video file name and path as well as the amount the speed
was changed will be stored in the Exif data of the new video.

Last modified 28 September 2023 6 Table of Contents

https://trac.FFmpeg.org/wiki/How%20to%20speed%20up%20/%20slow%20down%20a%20video
https://trac.FFmpeg.org/wiki/How%20to%20speed%20up%20/%20slow%20down%20a%20video

	Background
	Installing FFmpeg
	Windows
	macOS
	Shortcuts
	Updating

	Making video frames
	Making the video
	Making the panel
	Input parameters
	Calling FFmpeg with ExecuteScriptText
	Exif data

	Changing the video speed

