
Igor Unit Testing Framework
Documentation

Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

byte-physics.de

Sep 17, 2018

CONTENTS

1 Reference 3
1.1 What is a Unit Testing Framework? . 3
1.2 Guided Tour . 4
1.3 Basic Structure . 8
1.4 Advanced Usage . 11
1.5 Examples . 14
1.6 Code Documentation . 25

Index 33

i

ii

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

This package empowers a programmer to utilize unit testing for Igor Pro procedures and XOPs. If you do not yet
know about unit tests, start by reading the introduction on What is a Unit Testing Framework?.

There is a Guided Tour that will get you started on-the-fly. If you prefer, you can skip to read about Basic Structure or
Advanced Usage. Some may also find it useful to skip directly to the Examples.

CONTENTS 1

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

2 CONTENTS

CHAPTER

ONE

REFERENCE

1.1 What is a Unit Testing Framework?

The purpose of every program is to ensure that a specific task is performed reliably in a defined matter. Therefore,
programming is all about testing and quality control of the produced source code. These two workflow tasks are
entirely optional but are especially important when it comes to hazard and risk-sensitive tasks, as well as security-
relevant features of software with critical to catastrophic consequences. More generally speaking, it contributes to a
clean, professional look and better working experience if software works in a defined way and unit tests help to define
this way.

1.1.1 Testing

A program gets tested in various ways during development: A first test usually involves the syntactic correctness
and the correct usage of external libraries. It ensures that the program compiles and that it produces output for a
given task. Complex scenarios typically afford a much larger codebase and a more profound investigation of the
involved interfaces. The more complex the scenarios a program can handle, the more time is involved in its production.
Therefore it is crucial to define the program’s interface to indicate what it is capable of, and what not, to prevent it
getting used in the wrong context.

One standard in quality control is the four-eyes-check by two persons. Writing professional code in a lean and agile,
continuous delivery software environment, usually involves this additional peer review step. The review step is an
attempt to separate code production, and testing to separate persons as the perception of the tester adds valuable input
to the code leading to quicker deployment of quality software.

A review typically involves testing the functionality of the code output for different inputs. These tests are equally
performed during code production and review stages. The problem, this review step is targetting onto, is that a
programmer typically does not think of all critical test situations. The tester, in turn, does not know about the code
and its context and therefore the reviewer needs time to understand the context of the program. In an attempt to save
valuable time, review and code production have to be based on a definition for the produced functionality which can be
for example the creation of a valid file format. Such a definition allows the tester to perform tests without necessarily
needing to hack into the code base. Defining these tests somewhere records the current functionality of the program
and protects it against changes.

Even though, the review process guarantees a higher level of quality, the additional assessment requires an assignment
of double the developing resources and those resources are usually considered precious. In this context, automated
test environments minimize production time and ensure a consistent level of quality. This level of quality can then
consistently get maintained over time when further changes are introduced to the unit.

3

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

1.1.2 Unit Tests

To be able to perform automated tests, the code is typically organized in functional units. A unit is a part of software
inside a project that performs a particular task. Typically this unit is isolated and runs on a linearly independent path
inside the code. The unit communicates via an interface which accepts inputs and produces outputs.

########
input --> # unit # --> output

########

In the most simple case, a unit is a function. The parameters which get passed to the function define the input interface,
and the return value is the output interface. In a more complex scenario, such a unit could be responsible for converting
one file to another format.

A unit can be checked for valid output by defining a suite of tests. The test suite is further grouped into atomically
small tests which are called Test Cases. A test case typically checks that an entity fulfills specific properties and a unit
produces valid output for a given input. Within these checks, the result of defined inputs is compared against defined
outputs. The comparisons are performed using different types of Assertions. As long as all test cases inside a test suite
are executed correctly, the tested functionality of the unit is maintained. Performing these checks on a regular basis
also ensures that a consistent level of quality and a defined functionality is maintained upon changes to the code.

1.1.3 Agile Development

When using version control systems like git, the introduced changes are typically tested with test pipelines before
applying the changes by using apps like jenkins or gitlab. These automated tests introduce a step prior to the review
process which makes the review more clear and transparent and allow a quicker code review. This Framework enables
unit tests for continuous integration and continuous delivery environments in Igor Pro. Do not hesitate to contact us
if you need further assistance in creating a professional CI/CD workflow for your Igor Pro project to ensure a higher
level of quality in your code.

1.2 Guided Tour

To visualize the functionality of the unit testing framework, we will start with a guided tour in which we create our
first unit and test it with the unit testing framework. The tour will cover the following steps:

• Creating a unit

• Testing the unit

• Executing the test

• Extending the test

Please make sure that the framework has been properly installed if you wish to follow the guide. For the framework
to work, the files from the procedures folder should be placed into the User Procedures Folder of your Igor Pro setup.

1.2.1 Creating a unit

We will start by creating a simple unit.

The following formula gives the diameter 𝑑 of a carbon nanotube:

𝑑 =
𝑎0
𝜋

·
√︀
𝑛2 +𝑚2 + 𝑛𝑚

4 Chapter 1. Reference

https://git-scm.com/
https://jenkins.io/
https://docs.gitlab.com/ee/ci/
https://www.wavemetrics.com/project/unitTesting
https://www.wavemetrics.com/
https://www.byte-physics.de/en/kontakt.html
https://github.com/byte-physics/igor-unit-testing-framework/tree/master/procedures

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

The natural numbers 𝑛 and 𝑚 define the carbon nanotube type. 𝑎0 is the unit cell lattice constant of graphene (Under-
standing the background of the above formula is not required here).

The formula is easily translated into Igor Pro code:

Listing 1: Procedure

1 #pragma TextEncoding = "UTF-8"
2 #pragma rtGlobals=3
3

4 // calculate carbon nanotube diameters
5 Function diameter(n, m)
6 Variable n, m
7

8 return 0.144 / 3.1415 * (3 * (n^2 + n*m + m^2))^(0.5)
9 End

1.2.2 Testing the unit

If we want to rely on this formula with other calculations, we have to test if the output of this function is both correct
and within our required accuracy range. To perform these two tests, we define a Test Case.

Listing 2: test0

1 #pragma TextEncoding = "UTF-8"
2 #pragma rtGlobals=3
3

4 #include "unit-testing"
5

6 Function testDiameter()
7 // the (6,5) type is 0.757nm in diameter
8 REQUIRE_CLOSE_VAR(diameter(6, 5), 0.757, tol=1e-3)
9 // this is the same value as for the (9,1) type.

10 REQUIRE_EQUAL_VAR(diameter(6, 5), diameter(9, 1))
11 End

The test case testDiameter contains two checks. Both are required to pass the test suite. In the context of this
framework we will refer to them as assertions. The first assertion REQUIRE_CLOSE_VAR compares the two floating
point numbers within the given tolerance of 0.001nm. The second REQUIRE_EQUAL_VAR uses a mathematical
peculiarity of the above formula to check if the calculation gives correct output.

The test case function can be placed anywhere inside the main procedure file, but it can be considered good practice
to separate test cases into a procedure file of their own. Such a separate procedure file that only contains test cases is
called a Test Suite. A test suite can for example perform all the necessary tests for a unit.

1.2.3 Executing the test

To execute the test suite we use the RunTest() directive. It accepts the name of our test suite (the procedure window)
as an argument. In our example we have named the procedure window "test0".

•RunTest("test0")
Start of test "Unnamed"
Entering test suite "Unnamed"
Entering test case "testDiameter"
Leaving test case "testDiameter"

(continues on next page)

1.2. Guided Tour 5

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

(continued from previous page)

Finished with no errors
Leaving test suite "test0"
Test finished with no errors
End of test "Unnamed"

In the cosole output above, the highlighted line indicates that all tests within the current test suite have passed success-
fully. The unit is working properly. The full Igor Pro environment with our unit test should look like this:

6 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

1.2. Guided Tour 7

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

1.2.4 Extending the test

Note, that we have defined a test case for the current capabilities of our function diameter(). The calculation is
only exact up to the specified error range. The high error is caused by a fixated value of pi=3.1415. To emphasize
this, we can add an assertion to the test case that will fail but will not affect the error counter. Such an assertion is
done with a WARN_* directive. Every REQUIRE_* assertion also has a WARN_* variant, see:ref:AssertionTypes for a
summary.

Function testDiameter()
// the (6,5) type is 0.757nm in diameter
REQUIRE_CLOSE_VAR(diameter(6, 5), 0.757, tol=1e-3)
// this is the same value as for the (9,1) type.
REQUIRE_EQUAL_VAR(diameter(6, 5), diameter(9, 1))
// warn if accuracy is not exact
WARN_CLOSE_VAR(diameter(6, 5), 0.7573453, tol=1e-7)

End

The output of RunTest() will now include a warning assertion without failing the test case:

•RunTest("test0")
Start of test "Unnamed"
Entering test suite "Unnamed"
Entering test case "testDiameter"
Entering test case "testDiameter"
0.757368 ~ 0.757345 with strong check and tol 1e-07: is false
Assertion "WARN_CLOSE_VAR(diameter(6, 5), 0.7573453, tol=1e-7)" failed in line 11,

→˓procedure "test0"
Leaving test case "testDiameter"
Finished with no errors
Leaving test suite "test0"
Test finished with no errors
End of test "Unnamed"

If the program should be extended to a higher level of accuracy, this warning can be set to the corresponding REQUIRE
assertion. The program diameter then has to be changed to reflect the new requirement. In the current example, 𝑝𝑖
would need to be used instead of only a handful of decimal places hardcoded.

In a test-driven workflow, the unit tests get extended before even changing anything at the code base. Defining the test
case prior to any code production assures that the software development is not producing unnecessary (and untested)
code.

A more elaborate example for defining a peak find functionality can be found in the examples section. For a quick
start, also have a look at the first example.

1.3 Basic Structure

The interface design and naming is inspired by the Boost Test Library. Following this naming scheme, the unit testing
package consists of three basic structural elements:

• Test Suites

• Test Cases

• Assertions

The basic building blocks of this unit testing framework are assertions. Assertions are used for checking if a condition
is true. See Assertion Types for a clarification of the difference between the three assertion types. Assertions are
grouped into single test cases and test cases are organized in test suites.

8 Chapter 1. Reference

http://www.boost.org/libs/test

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

A test suite is a group of test cases that live in a single procedure file. You can group multiple test suites in a named
test environment by using the optional parameter name of RunTest().

For a list of all objects see genindex or use the search.

1.3.1 Test Run

A Test Run is executed using RunTest() with only a single mandatory parameter which is the Test Suite.

Function definition of RunTest

variable RunTest(string procWinList, string name = defaultValue, string testCase = defaultValue, variable
enableJU = defaultValue, variable enableTAP = defaultValue, variable enableRegExp = de-
faultValue, variable allowDebug = defaultValue, variable keepDataFolder = defaultValue)

Main function to execute test suites with the unit testing framework.

Listing 3: usage example

RunTest("proc0;proc1", name="myTest")

This command will run the test suites proc0 and proc1 in a test named myTest.

Return total number of errors

Parameters

• procWinList: A list of procedure files that should be treated as test suites. The list should be given
semicolon (“;”) separated.

The procedure name must not include Independent Module specifications.

This parameter can be given as a regular expression with enableRegExp set to 1.

• name: (optional) default “Unnamed” descriptive name for the executed test suites. This can be used
to group multiple test suites into a single test run.

• testCase: (optional) default “.*” (all test cases in the list of test suites) function names, resembling
test cases, which should be executed in the given list of test suites (procWinList).

The list should be given semicolon (“;”) separated.

This parameter can be treated as a regular expression with enableRegExp set to 1.

• enableJU: (optional) default disabled, enabled when set to 1: A JUNIT compatible XML file is
written at the end of the Test Run. It allows the combination of this framework with continuous
integration servers like Atlassian Bamboo.

• enableTAP: (optional) default disabled, enabled when set to 1: A TAP compatible file is written at
the end of the test run.

Test Anything Protocol (TAP) standard 13

• enableRegExp: (optional) default disabled, enabled when set to 1: The input for test suites
(procWinList) and test cases (testCase) is treated as a regular expression.

1.3. Basic Structure 9

https://testanything.org
https://testanything.org/tap-version-13-specification.html

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Listing 4: Example

RunTest("example[1-3]-plain\\.ipf", enableRegExp=1)

This command will run all test cases in the following test suites:

– example1-plain.ipf

– example2-plain.ipf

– example3-plain.ipf

• allowDebug: (optional) default disabled, enabled when set to 1: The Igor debugger will be left in
its current state when running the tests.

• keepDataFolder: (optional) default disabled, enabled when set to 1: The temporary data folder
wherein each test case is executed is not removed at the end of the test case. This allows to review the
produced data.

1.3.2 Test Suite

A Test Suite is a group of Test Cases which should belong together. All test functions are defined in a single procedure
file. Generally speaking, a Test Suite is equal to a procedure file. Therefore tests suites can not be nested, although
multiple test suites can be run with one command by supplying a list to the parameter procWinList in RunTest().

Note: Although possible, a test suite should not live inside the main program. It should be separated from the rest of
the project into its own procedure file. This also allows to load only the necessary parts of your program into the unit
test.

1.3.3 Test Case

A Test Case is one of the basic building blocks grouping assertions together. A function is considered a test case if it
fulfills all of the following properties:

1. It takes no parameters.

2. Its name does not end with _IGNORE.

3. It is either non-static, or static and part of a regular module.

The first rule is making the test case callable in automated test environments.

The second rule is reserving the _IGNORE namespace to allow advanced users to add their own helper functions. It is
advised to define all test cases as static functions and to create one regular distinctive module per procedure file. This
will keep the Test Cases in their own namespace and thus not interfere with user-defined functions in ProcGlobal.

A defined list of test cases in a test suite can be run using the optional parameter testCase of RunTest(). When
executing multiple test suites and a test case is found in more than one test suite, it is executed in every matching test
suite.

Example:

In Test Suite TestSuite_1.ipf the Test Cases static Duplicate() and static Unique_1() are defined. In Test Suite Test-
Suite_2.ipf the Test Cases static Duplicate(), static Unique_2() are defined.

10 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Runtest("TestSuite_1.ipf;TestSuite_2.ipf", testCase="Unique_1;Unique_2;Duplicate")

The command will run the two test suites TestSuite_1.ipf and TestSuite_2.ipf separately. Within every test suites two
test cases are execute: the Unique* test case and the Duplicate test case. The Duplicate test cases do not interfere with
each other since they are static to the corresponding procedure files. Since the duplicate test cases are found in both
test suites, they are also executed in both.

Note: The Test Run will not execute if the one of the specified test cases can not be found in the given list of test
suites. This is also applies if no test case could be found using a regular expression pattern.

1.3.4 Assertion Types

An assertion checks that a given condition is true or in more general terms that an entity fulfills specific properties. Test
assertions are defined for strings, variables and waves and have ALL_CAPS names. The assertion group is specified
with a prefix to the assertion name using one of WARN, CHECK or REQUIRE. Assertions usually come in these
triplets which differ only in how they react on a failed assertion. The following table clarifies the difference between
the three assertion prefix groups:

Type Create Log Message Increment Error Count Abort execution immediately
WARN YES NO NO
CHECK YES YES NO
REQUIRE YES YES YES

The most simple assertion is CHECK() which tests if its argument is true. If you do not want to increase the error
count, you could use the corresponding WARN() function and if you want to Abort the execution of the current test
case if the supplied argument is false, you can use the REQUIRE() variant for this.

Similar to these simple assertions there are many different checks for typical use cases. Comparing two variables, for
example, can be done with WARN_EQUAL_VAR(), or REQUIRE_EQUAL_VAR(). Take a look at Example10 for a
test case with various assertions.

Note: See Assertions for a complete list of all available checks. If in doubt use the CHECK variant. Only the
CHECK_* variants are documented, as the interface for REQUIRE_* and WARN_* is equivalent.

Assertions with only one variant are PASS() and FAIL(). If you want to know more about how to use these two
special assertions, take a look at Example7.

1.4 Advanced Usage

1.4.1 Test Hooks

A Test Run can be extended with user-defined code at specific points during its execution. These pre-defined injection
points are at the beginning and respectively at the end of a complete Test Run, a Test Suite, and a Test Case.

The following functions are reserved for user code injections:

TEST_BEGIN_OVERRIDE()

Executed at the begin of a Test Run.

1.4. Advanced Usage 11

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

TEST_END_OVERRIDE()

Executed at the end of a Test Run.

TEST_SUITE_BEGIN_OVERRIDE()

Executed at the begin of a Test Suite.

TEST_SUITE_END_OVERRIDE()

Executed at the end of a Test Suite.

TEST_CASE_BEGIN_OVERRIDE()

Executed at the begin of a Test Case.

TEST_CASE_END_OVERRIDE()

Executed at the end of a Test Case.

Note: TEST_END_OVERRIDE() is executed at the very end of a test run so that the Igor debugger state is already
reset to the state it had before RunTest() was executed.

Note: The functions TEST_SUITE_BEGIN_OVERRIDE() and TEST_SUITE_END_OVERRIDE() as well as
TEST_CASE_BEGIN_OVERRIDE() and TEST_CASE_END_OVERRIDE() can also be defined locally in a test
suite with the static keyword. example2 shows how static functions are called the framework.

These functions are executed automatically if they are defined anywhere in global or local context. For example,
TEST_CASE_BEGIN_OVERRIDE() gets executed at the beginning of each Test Case. Locally defined func-
tions always override globally defined ones of the same name. To visualize this behavior, take a look at the
following scenario: A user would like to have code executed only in a specific Test Suite. Then the functions
TEST_SUITE_BEGIN_OVERRIDE() and TEST_SUITE_END_OVERRIDE() can be defined locally within the
current Test Suite by declaring them static to the current Test Suite. The local (static) functions then replace any
previously defined global functions. The functionality with additional user code at certain points of a Test Run is
demonstrated in Example5.

Note: If the locally defined function should only extend a global function the user can call the global function within
the local function as follows:

FUNCREF USER_HOOK_PROTO tcbegin_global = TEST_CASE_BEGIN_OVERRIDE
tcbegin_global(TestCaseName)

To give a possible use case, take a look at the following scenario: By default, each Test Case is executed in its own
temporary data folder. TEST_CASE_BEGIN_OVERRIDE() can be used to set the data folder to root:. This will
result that each Test Case gets executed in root: and no cleanup is done afterward. The next Test Case then starts with
the data the previous Test Case left in root:.

Note: By default the Igor debugger is disabled during the execution of a test run.

1.4.2 JUNIT Output

The igor unit testing framework supports output of test run results in JUNIT compatible format. The output can be
enabled by adding the optional parameter enableJU=1 to RunTest(). The XML output files are written to the

12 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

experiments home directory with naming JU_Experiment_Date_Time.xml. If a file with the same name already exists
a three digit number is added to the name. The JUNIT Output also contains the history log of each test case and test
suite.

1.4.3 Test Anything Protocol Output

Output according to the Test Anything Protocol (TAP) standard 13 can be enabled with the optional parameter enable-
TAP = 1 of RunTest().

The output is written into a file in the experiment folder with a unique generated name tap_’time’.log. This prevents
accidental overwrites of previous test runs. A TAP output file combines all Test Cases from all Test Suites given in
RunTest(). Additional TAP compliant descriptions and directives for each Test Case can be added in the two lines
preceeding the function of a Test Case:

// #TAPDescription: My description here
// #TAPDirective: My directive here

For directives two additional keywords are defined that can be written at the beginning of the directive message.

• TODO indicates a Test that includes a part of the program still in development. Failures here will be ignored by
a TAP consumer.

• SKIP indicates a Test that should be skipped. A Test with this directive keyword is not executed and reported
always as ‘ok’.

Examples:

// #TAPDirective: TODO routine that should be tested is still under development

or

// #TAPDirective: SKIP this test gets skipped

See the Experiment in the TAP_Example folder for reference.

1.4.4 Automate Test Runs

To further simplify test execution it is possible to automate test runs from the command line.

Steps to do that include:

• Implement a function called run() in ProcGlobal context taking no parameters. This function must perform all
necessary steps for test execution, which is at least one call to RunTest().

• Put the test experiment together with your Test Suites and the script helper/autorun-test.bat into its own folder.

• Run the batch file autorun-test.bat.

• Inspect the created log file.

The example batch files for autorun create a file named DO_AUTORUN.TXT before starting Igor Pro. This enables
autorun mode. After the run() function is executed and returned the log is saved in a file on disk and Igor Pro quits.

A different autorun mode is enabled if the file is named DO_AUTORUN_PLAIN.TXT. In this mode no log file is saved
after the test execution and Igor Pro does not quit. This mode also does not use the Operation Queue.

See also Example6.

1.4. Advanced Usage 13

https://testanything.org/tap-version-13-specification.html

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

1.4.5 Running in an Independent Module

The unit-testing framework can be run itself in an independent module. This can be required in very rare cases when
the ProcGlobal procedures might not always be compiled.

See also Example9.

1.4.6 Handling of Abort Code

The unit-testing framework continues with the next test case after catching Abort and logs the abort code. Currently
differentiation of different abort conditions include manual user aborts, stack overflow and an encountered Abort in
the code. The framework is terminated when manually pressing the Abort button.

Note: Igor Pro 6 can not differentiate between manual user aborts and programmatic abort codes. Pressing the Abort
button in Igor Pro 6 will therefore terminate only the current test case and continue with the next queued test case.

1.5 Examples

The example section shows the usage of the Igor Unit Testing Framework. If you are just starting to use this framework,
consider taking the Guided Tour.

1.5.1 Example1

This example is showing the basic working principle of the compare assertion. Constant values are given as input to
the unit abs() and the output is checked for equality.

This unit test makes sure that the function abs() behaves as expected. For example if you use the unit abs() in
a function and you give NaN as an input value the output value will also be NaN. The function is also capable of
handling INF singularities.

Listing 5: example1-plain.ipf

1 #pragma rtGlobals=3
2 #pragma TextEncoding="UTF-8"
3

4 #include "unit-testing"
5

6 Function TestAbs()
7

8 CHECK_EQUAL_VAR(abs(1.5), 1.5)
9 CHECK_EQUAL_VAR(abs(-1.5), 1.5)

10 CHECK_EQUAL_VAR(abs(NaN), NaN)
11 WARN(abs(NaN) == NaN)
12 CHECK_EQUAL_VAR(abs(INF), INF)
13 CHECK_EQUAL_VAR(abs(-INF), INF)
14 End

The test suite can be executed using the following command:

14 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Listing 6: command

RunTest("example1-plain.ipf")

By looking at line 10 in this example it becomes clear that CHECK_EQUAL_VAR() is a better way of comparing
numeric variables then the plain CHECK() assertion since NaN == NaN is false. The error is skipped by using the
WARN() variant and will not raise the error counter. If you want to know up to what extend those methods differ, take
a look at the section on Assertion Types .

Note: It is recommended to take a look at the complete list of assertions. This will help in choosing the right assertion
type for a comparison.

The definition for the assertions in this test suite:

• CHECK_EQUAL_VAR()

• WARN()

1.5.2 Example2

This test suite has its own run routine. The run_IGNORE function serves as an entry point for "example2-plain.
ipf". By using the _IGNORE suffix, the function itself will be ignored as a test case. This is also explained in the
section about Test Cases. It is important to note that calling RunTest() would otherwise lead to a recursion error.

There are multiple calls to RunTest() in run_IGNORE to demonstrate the use of optional arguments. Calling the
function without any optional argument will lead to a search for all available test cases in the procedure file. You can
also execute specific test cases by supplying them with the testCase parameter.

The optional parameter name is especially useful for bundling more than one procedure file into a single test run.

The test suite itself lives in a module and all test cases are static to that module. This is the recommended en-
vironment for a test suite. When using the static keyword, you also have to define a module with #pragma
ModuleName=Example2

Listing 7: example2-plain.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"
#pragma ModuleName=Example2

#include "unit-testing"

Function run_IGNORE()

// executes all test cases of this file
RunTest("example2-plain.ipf")
// execute only one test case at a time
RunTest("example2-plain.ipf", testCase="VerifyStringComparison")
// explicitly specify both tests
RunTest("example2-plain.ipf", testCase="VerifyStringComparison;

→˓VerfifyEmptyString")
// specify with regular expression
RunTest("example2-plain.ipf", testCase="Verify.*", enableRegExp = 1)
// Give the test a descriptive name
RunTest("example2-plain.ipf", name="My first test")

(continues on next page)

1.5. Examples 15

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

(continued from previous page)

End

static Function VerifyStringComparison()

string strLow = "123abc"
string strUP = "123ABC"

// by default string comparison is done case insensitive
CHECK_EQUAL_STR(strLow, strUP)
// It can be specificylly enabled or disabled.
CHECK_EQUAL_STR(strLow, strUP, case_sensitive = 0)
// Now we use WARN because the two strings are not equal.
WARN_EQUAL_STR(strLow, strUP, case_sensitive = 1)
// other comparisons are also possible
CHECK_EQUAL_VAR(strlen(strLow), 6)

End

static Function VerfifyEmptyString()

string nullString
string emptyString = ""
string filledString = "filled"

// an uninitialized string is not equal to an empty string.
CHECK_NEQ_STR(emptyString, nullString)
// same as for a filled string
CHECK_NEQ_STR(filledString, nullString)
// there is an explicit function for empty strings
CHECK_EMPTY_STR(emptyString)
// and also for null strings.
CHECK_NULL_STR(nullString)

End

Listing 8: command

run_IGNORE()

Note: The definition for the Assertions in this test suite:

• CHECK_EQUAL_STR()

• CHECK_NEQ_STR()

• CHECK_EMPTY_STR()

• CHECK_NULL_STR()

1.5.3 Example3

This test suite emphasizes the difference between the WARN(), CHECK(), and REQUIRE() assertion variants.

The WARN_* variant does not increment the error count if the executed assertion fails. CHECK_* variants increase
the error count. REQUIRE_* variants also increment the error count but will stop the execution of the test case
immediately if the assertion fails.

16 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Even if a test has failed, the test end hook is still executed. See Example5 for more details on hooks.

Listing 9: example3-plain.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"
#pragma ModuleName=Example3

#include "unit-testing"

// WARN_* does not increment the error count
Function WarnTest()

WARN_EQUAL_VAR(1.0,0.0)
End

// CHECK_* increments the error count
Function CheckTest()

CHECK_EQUAL_VAR(1.0,0.0)
End

// REQUIRE_* will stop execution of the test case immediately
Function RequireTest()

REQUIRE_EQUAL_VAR(1.0,0.0)
print "If I'm reached math is wrong !"

End

Listing 10: command

print RunTest("example3-plain.ipf")

The error count this test suite returns is 2

Note: See also the section on Assertion Types.

• CHECK()

• WARN()

• REQUIRE()

1.5.4 Example4

This test suite shows the use of test assertions for waves.

The type of a wave can be checked with CHECK_EQUAL_WAVES() and binary flags for the MinorType and Ma-
jorType. All flags are defined in Test Wave Flags and can be concatenated as shown in line 45. If the comparison is
done against such a concatenation, it will fail if a single flag is not true. This is also shown in line 47 where the free
wave does not exist but as proven before, it is definitely numeric.

It is noteworthy that each test case is executed in a fresh and empty datafolder. There is no need to use KillWaves
or Make/O here.

1.5. Examples 17

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Listing 11: example4-wavechecking.ipf

1 #pragma rtGlobals=3
2 #pragma TextEncoding="UTF-8"
3 #pragma ModuleName=Example4
4

5 #include "unit-testing"
6

7

8 static Function CheckMakeDouble()
9

10 CHECK_EMPTY_FOLDER()
11

12 Make/D myWave
13 CHECK_WAVE(myWave, NUMERIC_WAVE, minorType = DOUBLE_WAVE)
14 CHECK_EQUAL_VAR(DimSize(myWave, 0), 128)
15

16 Duplicate myWave, myWaveCopy
17 CHECK_EQUAL_WAVES(myWave, myWaveCopy)
18

19 End
20

21 static Function CheckMakeText()
22

23 CHECK_EMPTY_FOLDER()
24

25 Make/T myWave
26 CHECK_WAVE(myWave, TEXT_WAVE)
27 CHECK_EQUAL_VAR(DimSize(myWave, 0), 128)
28

29 Duplicate/T myWave, myWaveCopy
30 CHECK_EQUAL_WAVES(myWave, myWaveCopy)
31 End
32

33 static Function CheckWaveTypes()
34

35 WAVE/Z wv
36 CHECK_WAVE(wv, NULL_WAVE)
37

38 Make/FREE/U/I wv0
39 CHECK_WAVE(wv0, FREE_WAVE | NUMERIC_WAVE, minorType = UNSIGNED_WAVE | INT32_

→˓WAVE)
40

41 Make/FREE/T wv1
42 CHECK_WAVE(wv1, FREE_WAVE | TEXT_WAVE)
43

44 Make/O/U/I root:wv2/WAVE=wv2
45 CHECK_WAVE(wv2, NORMAL_WAVE | NUMERIC_WAVE, minorType = UNSIGNED_WAVE | INT32_

→˓WAVE)
46 //The following check for a free wave is intended to fail
47 WARN_WAVE(wv2, FREE_WAVE | NUMERIC_WAVE, minorType = UNSIGNED_WAVE | INT32_

→˓WAVE)
48 End

18 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Listing 12: command

print RunTest("example4-wavechecking.ipf")

Helper functions to check wave types and compare with reference waves are also provided in Assertions.

Note: The definition for the Assertions in this test suite:

• CHECK_EMPTY_FOLDER()

• CHECK_WAVE()

• CHECK_EQUAL_VAR()

• CHECK_EMPTY_STR()

• CHECK_EQUAL_WAVES()

1.5.5 Example5

The two test suites show how to use test hook overrides.

Here is shown how user code can be added to the Test Run at certain points. In this test suite, additional code can be
executed at the beginning and end of the test cases. This is done by declaring the TEST_CASE_BEGIN_OVERRIDE
or TEST_CASE_END_OVERRIDE function 'static'. Functions with this sepcific naming and the _OVERRIDE
suffix are automatically found and registered as hooks.

Be aware that a 'static' defined hook overrides any global TEST_CASE_BEGIN_OVERRIDE functions for this
Test Suite. If you want to execute the global TEST_CASE_BEGIN_OVERRIDE as well add this code to the static
override function:

FUNCREF USER_HOOK_PROTO tcbegin_global = $"ProcGlobal#TEST_CASE_BEGIN_OVERRIDE"
tcbegin_global(name)

The second procedure file example5-extensionhooks-otherSuite.ipf is in ProcGlobal context so the test hook exten-
sions are also global.

Listing 13: example5-extensionhooks.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"
#pragma ModuleName=Example5

#include "unit-testing"

static Function TEST_CASE_BEGIN_OVERRIDE(name)
string name

printf ">> Begin of Test Case %s was extended in this test suite only <<\r",
→˓name
End

static Function TEST_CASE_END_OVERRIDE(name)
string name

printf ">> End of Test Case %s was extended in this test suite only <<\r",
→˓name (continues on next page)

1.5. Examples 19

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

(continued from previous page)

End

static Function CheckSquareRoot()

CHECK_EQUAL_VAR(sqrt(4.0), 2.0)
CHECK_CLOSE_VAR(sqrt(2.0), 1.4142, tol = 1e-4)

End

Listing 14: example5-extensionhooks-otherSuite.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"

#include "unit-testing"

Function TEST_BEGIN_OVERRIDE(name)
string name

print ">> The global Test Begin is extended by this output <<"
End

Function TEST_END_OVERRIDE(name)
string name

print ">> The global Test End is extended by this output <<"
End

Function TEST_CASE_END_OVERRIDE(name)
string name

print ">> This is the global extension for the End of Test Cases <<"
End

Function TEST_SUITE_BEGIN_OVERRIDE(name)
string name

print ">> The Test Suite Begin is globally extended by this output <<"
End

Function TEST_SUITE_END_OVERRIDE(name)
string name

print ">> The Test Suite End is globally extended by this output <<"
End

Function CheckBasicMath()

CHECK_EQUAL_VAR(1+2,3)
End

20 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

Listing 15: command

RunTest("example5-extensionhooks.ipf;example5-extensionhooks-otherSuite.ipf")

Each hook will output a message starting with >>. After the Test Run has finished you can see at which points the
additional user code was executed.

Note: Also take a look at the Test Hooks section.

The definition for the Assertions in this test suite:

• CHECK_EQUAL_VAR()

• CHECK_CLOSE_VAR()

1.5.6 Example6

This test suite shows the automatic execution of test runs from the command line. On Windows, call the “autorun-test-
xxx.bat” from the helper folder.

The autorun batch script executes test runs for all pxp experiment files in the current folder. After the run, a log file is
created in the folder. The log file includes the history of the Igor Pro Experiment. See also the section on Automate
Test Runs.

Listing 16: example6-automatic-invocation.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"
#pragma ModuleName=Example6

#include "unit-testing"

static Function CheckTrigonometricFunctions()

CHECK_EQUAL_VAR(sin(0.0), 0.0)
CHECK_EQUAL_VAR(cos(0.0), 1.0)
CHECK_EQUAL_VAR(tan(0.0), 0.0)

End

Listing 17: example6-runner.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"

#include "unit-testing"

Function run()

RunTest("example6-automatic-invocation.ipf")
End

Note: The definition for the assertion in this test suite:

• CHECK_EQUAL_VAR()

1.5. Examples 21

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

1.5.7 Example7

This test suite is showing how unhandled aborts in the test cases are displayed.

The Test environment catches such conditions and treats them accordingly. This works with both Abort and
AbortOnValue.

Listing 18: example7-uncaught-aborts.ipf

#pragma rtGlobals=3
#pragma TextEncoding="UTF-8"
#pragma ModuleName=Example7

#include "unit-testing"

Function CheckNumber(a)
variable a

PASS()
if(numType(a) == 2)

Abort
endif
return 1

End

static Function CheckNumber_not_nan()

CheckNumber(1.0)
End

static Function CheckNumber_nan()

CheckNumber(NaN)
End

Listing 19: command

RunTest("example7-uncaught-aborts.ipf")

Note: Relevant definitions for the Assertions in this test suite:

• PASS()

1.5.8 Example8

This test suite shows the behaviour of the unit testing environment if user code generates an uncaught Runtime Error.
The test environment catches this condition and gives a detailed error message in the history. The runtime error (RTE)
is of course treated as FAIL().

In this example, the highlighted lines both generate such a RTE due to a missing data folder reference.

There might be situations where the user wants to catch a runtime error (RTE) himself. In line 12
TestWaveOpSelfCatch shows how to catch the RTE before the test environment handles it. The test environ-

22 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

ment is controlled manually by PASS() and FAIL(). PASS() increases the assertion counter and FAIL() treats
this assertion as fail when a RTE was caught.

Listing 20: example8-uncaught-runtime-errors

1 #pragma rtGlobals=3
2 #pragma TextEncoding="UTF-8"
3 #pragma ModuleName=Example8
4

5 #include "unit-testing"
6

7 Function TestWaveOp()
8

9 WAVE/Z/SDFR=$"I dont exist" wv;
10 End
11

12 Function TestWaveOpSelfCatch()
13

14 try
15 WAVE/Z/SDFR=$"I dont exist" wv; AbortOnRTE
16 PASS()
17 catch
18 // Do not forget to clear the RTE
19 variable err = getRTError(1)
20 FAIL()
21 endtry
22 End

Listing 21: command

RunTest("example8-uncaught-runtime-errors.ipf")

Note: Relevant definitions for the doc:assertions in this test suite:

• PASS()

• FAIL()

1.5.9 Example9

This examples shows how the whole framework can be run in an independent module.

Please note that when calling the test suite, the procedure window name does not need to include any independent
module specification.

Listing 22: example9-IM.ipf

#pragma TextEncoding = "UTF-8"
#pragma rtGlobals=3
#pragma IndependentModule=Example9

#include "unit-testing"

Function TestMe()

(continues on next page)

1.5. Examples 23

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

(continued from previous page)

CHECK_EQUAL_VAR(1, 1)
End

Listing 23: command

Example9#RunTest("example9-IM.ipf")

Note: Definition for the assertion in this test suite:

• CHECK_EQUAL_VAR()

1.5.10 Example10

This example tests the functionality of a peak find library found on github. It demonstrates that by defining a unit test,
we can rely on the functionality of an external library. Even though we can not see the code itself from this unit, we
can test it and see if it fits our needs. Keep in mind that a program is only as good as the unit test the define it.

Listing 24: example10-peakfind.ipf

#pragma TextEncoding = "UTF-8"
#pragma rtGlobals=3 // Use modern global access method and strict wave
→˓access.

#include "unit-testing"

// https://github.com/ukos-git/igor-common-utilities.git
#include "common-utilities"

Function testSinglePeakFit()

// define a peak
variable peak_position = 570
variable peak_fwhm = 50

// create the peak
Make/O root:spectrum/WAVE=peak
SetScale x, 0, 1000, "nm", peak
peak = Gauss(x, peak_position, peak_fwhm) + gnoise(1e-3)

// do the fit
wave/Z/WAVE peakParam = Utilities#FitGauss(peak)

// check that our input wave was good
REQUIRE_WAVE(peak, NUMERIC_WAVE, minorType = FLOAT_WAVE)
// check that the returned function is a valid wave
REQUIRE_WAVE(peakParam, FREE_WAVE | WAVE_WAVE)
// require at least one peak
REQUIRE_EQUAL_VAR(1, DimSize(peakParam, 0) > 0)
// warn if more than one peak was found
WARN_EQUAL_VAR(1.0, DimSize(peakParam, 0))

// convert to human readable result
wave/Z peakInfo = Utilities#peakParamToResult(peakParam)

(continues on next page)

24 Chapter 1. Reference

https://github.com/ukos-git/igor-common-utilities.git

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

(continued from previous page)

// again, check that the function returned a valid wave
CHECK_WAVE(peakInfo, FREE_WAVE | NUMERIC_WAVE)
// check the found peak against the peak definition
REQUIRE_CLOSE_VAR(peakInfo[0][%position], peak_position, tol=peakInfo[0][

→˓%position_err])
REQUIRE_CLOSE_VAR(peakInfo[0][%fwhm], peak_fwhm, tol=peakInfo[0][%fwhm_err])

End

Listing 25: command

RunTest("example10-peakfind.ipf")

Note: Definition for the Assertions in this test suite:

• CHECK_WAVE()

• CHECK_EQUAL_VAR()

• CHECK_CLOSE_VAR()

1.6 Code Documentation

The code documentation is done using doxygen and converted for sphinx using breathe.

1.6.1 Assertions

group Assertions

Functions

variable CHECK(variable var)
Tests if var is true (1).

Parameters

• var: variable to test

variable CHECK_CLOSE_CMPLX(variable/c var1, variable/c var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

Compares two variables and determines if they are close.

Based on the implementation of “Floating-point comparison algorithms” in the C++ Boost unit testing
framework.

Literature: The art of computer programming (Vol II). Donald. E. Knuth. 0-201-89684-2. Addison-Wesley
Professional; 3 edition, page 234 equation (34) and (35).

Variant for complex numbers.

Parameters

1.6. Code Documentation 25

http://www.doxygen.nl
http://www.sphinx-doc.org
https://breathe.readthedocs.io

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

• var1: first variable

• var2: second variable

• tol: (optional) tolerance, defaults to 1e-8

• strong_or_weak: (optional) type of condition, can be 0 for weak or 1 for strong (default)

variable CHECK_CLOSE_VAR(variable var1, variable var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

Compares two variables and determines if they are close.

Based on the implementation of “Floating-point comparison algorithms” in the C++ Boost unit testing
framework.

Literature: The art of computer programming (Vol II). Donald. E. Knuth. 0-201-89684-2. Addison-Wesley
Professional; 3 edition, page 234 equation (34) and (35).

Parameters

• var1: first variable

• var2: second variable

• tol: (optional) tolerance, defaults to 1e-8

• strong_or_weak: (optional) type of condition, can be 0 for weak or 1 for strong (default)

variable CHECK_EMPTY_FOLDER()
Tests if the current data folder is empty.

Counted are objects with type waves, strings, variables and folders

variable CHECK_EMPTY_STR(string *str)
Tests if str is empty.

A null string is never empty.

Parameters

• str: string to test

variable CHECK_EQUAL_STR(string *str1, string *str2, variable case_sensitive = defaultValue)
Compares two strings for equality.

Parameters

• str1: first string

• str2: second string

• case_sensitive: (optional) should the comparison be done case sensitive (1) or case insen-
sitive (0, the default)

variable CHECK_EQUAL_TEXTWAVES(WaveText wv1, WaveText wv2, variable mode = defaultValue)
Tests two text waves for equality.

Parameters

• wv1: first text wave, can be invalid for Igor Pro 7 or later

• wv2: second text wave, can be invalid for Igor Pro 7 or later

• mode: (optional) features of the waves to compare, defaults to all modes, defined at EqualWave-
Flags

26 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

variable CHECK_EQUAL_VAR(variable var1, variable var2)
Tests two variables for equality.

For variables holding floating point values it is often more desirable use CHECK_CLOSE_VAR instead.
To fullfill semantic correctness this assertion treats two variables with both holding NaN as equal.

Parameters

• var1: first variable

• var2: second variable

variable CHECK_EQUAL_WAVES(WaveOrNull wv1, WaveOrNull wv2, variable mode = defaultValue,
variable tol = defaultValue)

Tests two waves for equality.

Parameters

• wv1: first wave

• wv2: second wave

• mode: (optional) features of the waves to compare, defaults to all modes, defined at EqualWave-
Flags

• tol: (optional) tolerance for comparison, by default 0.0 which does byte-by-byte comparison
(relevant only for mode=WAVE_DATA)

variable CHECK_NEQ_STR(string *str1, string *str2, variable case_sensitive = defaultValue)
Compares two strings for unequality.

Parameters

• str1: first string

• str2: second string

• case_sensitive: (optional) should the comparison be done case sensitive (1) or case insen-
sitive (0, the default)

variable CHECK_NEQ_VAR(variable var1, variable var2)
Tests two variables for inequality.

Parameters

• var1: first variable

• var2: second variable

variable CHECK_NON_EMPTY_STR(string *str)
Tests if str is not empty.

A null string is a non empty string too.

Parameters

• str: string to test

variable CHECK_NON_NULL_STR(string *str)
Tests if str is not null.

An empty string is always non null.

Parameters

1.6. Code Documentation 27

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

• str: string to test

variable CHECK_NULL_STR(string *str)
Tests if str is null.

An empty string is never null.

Parameters

• str: string to test

variable CHECK_PROPER_STR(string *str)
Tests if str is a “proper” string, i.e. a string with a length larger than zero.

Neither null strings nor empty strings are proper strings.

Parameters

• str: string to test

variable CHECK_SMALL_CMPLX(variable/c var, variable tol = defaultValue)
Tests if a variable is small using the inequality |𝑣𝑎𝑟| < |𝑡𝑜𝑙|.

Variant for complex numbers

Parameters

• var: variable

• tol: (optional) tolerance, defaults to 1e-8

variable CHECK_SMALL_VAR(variable var, variable tol = defaultValue)
Tests if a variable is small using the inequality |𝑣𝑎𝑟| < |𝑡𝑜𝑙|.

Parameters

• var: variable

• tol: (optional) tolerance, defaults to 1e-8

variable CHECK_WAVE(WaveOrNull wv, variable majorType, variable minorType = defaultValue)
Tests a wave for existence and its type.

See testWaveFlags

Parameters

• wv: wave reference

• majorType: major wave type

• minorType: (optional) minor wave type

variable FAIL()
Force the test case to fail.

variable PASS()
Increase the assertion counter only.

variable REQUIRE(variable var)

variable REQUIRE_CLOSE_CMPLX(variable/c var1, variable/c var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

variable REQUIRE_CLOSE_VAR(variable var1, variable var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

28 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

variable REQUIRE_EMPTY_FOLDER()

variable REQUIRE_EMPTY_STR(string *str)

variable REQUIRE_EQUAL_STR(string *str1, string *str2, variable case_sensitive = defaultValue)

variable REQUIRE_EQUAL_TEXTWAVES(WaveText wv1, WaveText wv2, variable mode = default-
Value)

variable REQUIRE_EQUAL_VAR(variable var1, variable var2)

variable REQUIRE_EQUAL_WAVES(WaveOrNull wv1, WaveOrNull wv2, variable mode = defaultValue,
variable tol = defaultValue)

variable REQUIRE_NEQ_STR(string *str1, string *str2, variable case_sensitive = defaultValue)

variable REQUIRE_NEQ_VAR(variable var1, variable var2)

variable REQUIRE_NON_EMPTY_STR(string *str)

variable REQUIRE_NON_NULL_STR(string *str)

variable REQUIRE_NULL_STR(string *str)

variable REQUIRE_PROPER_STR(string *str)

variable REQUIRE_SMALL_CMPLX(variable/c var, variable tol = defaultValue)

variable REQUIRE_SMALL_VAR(variable var, variable tol = defaultValue)

variable REQUIRE_WAVE(WaveOrNull wv, variable majorType, variable minorType = defaultValue)

variable WARN(variable var)

variable WARN_CLOSE_CMPLX(variable/c var1, variable/c var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

variable WARN_CLOSE_VAR(variable var1, variable var2, variable tol = defaultValue, variable
strong_or_weak = defaultValue)

variable WARN_EMPTY_FOLDER()
Tests if the current data folder is empty.

Counted are objects with type waves, strings, variables and folders

variable WARN_EMPTY_STR(string *str)

variable WARN_EQUAL_STR(string *str1, string *str2, variable case_sensitive = defaultValue)

variable WARN_EQUAL_TEXTWAVES(WaveText wv1, WaveText wv2, variable mode = defaultValue)

variable WARN_EQUAL_VAR(variable var1, variable var2)

variable WARN_EQUAL_WAVES(WaveOrNull wv1, WaveOrNull wv2, variable mode = defaultValue, vari-
able tol = defaultValue)

variable WARN_NEQ_STR(string *str1, string *str2, variable case_sensitive = defaultValue)

variable WARN_NEQ_VAR(variable var1, variable var2)

variable WARN_NON_EMPTY_STR(string *str)

variable WARN_NON_NULL_STR(string *str)

variable WARN_NULL_STR(string *str)

variable WARN_PROPER_STR(string *str)

variable WARN_SMALL_CMPLX(variable/c var, variable tol = defaultValue)

variable WARN_SMALL_VAR(variable var, variable tol = defaultValue)

1.6. Code Documentation 29

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

variable WARN_WAVE(WaveOrNull wv, variable majorType, variable minorType = defaultValue)

1.6.2 Helper Functions

The following Helper Functions are available:

group Helpers

Functions

variable DisableDebugOutput()
Turns debug output off.

variable EnableDebugOutput()
Turns debug output on.

1.6.3 Logical Flags

The following flags are binary set. One or more of them can apply at the same time.

Equal Wave Flags

These flags are used in CHECK_EQUAL_WAVES()

group EqualWaveFlags

Variables

const variable DATA_FULL_SCALE = 256

const variable DATA_UNITS = 8

const variable DIMENSION_LABELS = 32

const variable DIMENSION_SIZES = 512

const variable DIMENSION_UNITS = 16

const variable WAVE_DATA = 1

const variable WAVE_DATA_TYPE = 2

const variable WAVE_LOCK_STATE = 128

const variable WAVE_NOTE = 64

const variable WAVE_SCALING = 4

Test Wave Flags

The following flags are used in CHECK_WAVE(). Note that there is a minor and a major wave type.

30 Chapter 1. Reference

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

General

group TestWaveFlagsGeneral

Variables

const variable NULL_WAVE = 0x00

MajorType

group TestWaveFlagsMajor

Variables

const variable DATAFOLDER_WAVE = 0x04

const variable FREE_WAVE = 0x20

const variable NORMAL_WAVE = 0x10

const variable NUMERIC_WAVE = 0x01

const variable TEXT_WAVE = 0x02

const variable WAVE_WAVE = 0x08

MinorType

group TestWaveFlagsMinor

Variables

const variable COMPLEX_WAVE = 0x01

const variable DOUBLE_WAVE = 0x04

const variable FLOAT_WAVE = 0x02

const variable INT16_WAVE = 0x10

const variable INT32_WAVE = 0x20

const variable INT64_WAVE = 0x80

const variable INT8_WAVE = 0x08

const variable UNSIGNED_WAVE = 0x40

1.6. Code Documentation 31

Igor Unit Testing Framework Documentation, Release (master)
UnitTestingFramework-v1.07-1-g8839d8c

32 Chapter 1. Reference

INDEX

C
CHECK (C++ function), 25
CHECK_CLOSE_CMPLX (C++ function), 25
CHECK_CLOSE_VAR (C++ function), 26
CHECK_EMPTY_FOLDER (C++ function), 26
CHECK_EMPTY_STR (C++ function), 26
CHECK_EQUAL_STR (C++ function), 26
CHECK_EQUAL_TEXTWAVES (C++ function), 26
CHECK_EQUAL_VAR (C++ function), 27
CHECK_EQUAL_WAVES (C++ function), 27
CHECK_NEQ_STR (C++ function), 27
CHECK_NEQ_VAR (C++ function), 27
CHECK_NON_EMPTY_STR (C++ function), 27
CHECK_NON_NULL_STR (C++ function), 27
CHECK_NULL_STR (C++ function), 28
CHECK_PROPER_STR (C++ function), 28
CHECK_SMALL_CMPLX (C++ function), 28
CHECK_SMALL_VAR (C++ function), 28
CHECK_WAVE (C++ function), 28

D
DisableDebugOutput (C++ function), 30

E
EnableDebugOutput (C++ function), 30

F
FAIL (C++ function), 28

P
PASS (C++ function), 28

R
REQUIRE (C++ function), 28
REQUIRE_CLOSE_CMPLX (C++ function), 28
REQUIRE_CLOSE_VAR (C++ function), 28
REQUIRE_EMPTY_FOLDER (C++ function), 28
REQUIRE_EMPTY_STR (C++ function), 29
REQUIRE_EQUAL_STR (C++ function), 29
REQUIRE_EQUAL_TEXTWAVES (C++ function), 29
REQUIRE_EQUAL_VAR (C++ function), 29

REQUIRE_EQUAL_WAVES (C++ function), 29
REQUIRE_NEQ_STR (C++ function), 29
REQUIRE_NEQ_VAR (C++ function), 29
REQUIRE_NON_EMPTY_STR (C++ function), 29
REQUIRE_NON_NULL_STR (C++ function), 29
REQUIRE_NULL_STR (C++ function), 29
REQUIRE_PROPER_STR (C++ function), 29
REQUIRE_SMALL_CMPLX (C++ function), 29
REQUIRE_SMALL_VAR (C++ function), 29
REQUIRE_WAVE (C++ function), 29
RunTest (C++ function), 9

T
TEST_BEGIN_OVERRIDE (C++ function), 11
TEST_CASE_BEGIN_OVERRIDE (C++ function), 12
TEST_CASE_END_OVERRIDE (C++ function), 12
TEST_END_OVERRIDE (C++ function), 11
TEST_SUITE_BEGIN_OVERRIDE (C++ function), 12
TEST_SUITE_END_OVERRIDE (C++ function), 12

W
WARN (C++ function), 29
WARN_CLOSE_CMPLX (C++ function), 29
WARN_CLOSE_VAR (C++ function), 29
WARN_EMPTY_FOLDER (C++ function), 29
WARN_EMPTY_STR (C++ function), 29
WARN_EQUAL_STR (C++ function), 29
WARN_EQUAL_TEXTWAVES (C++ function), 29
WARN_EQUAL_VAR (C++ function), 29
WARN_EQUAL_WAVES (C++ function), 29
WARN_NEQ_STR (C++ function), 29
WARN_NEQ_VAR (C++ function), 29
WARN_NON_EMPTY_STR (C++ function), 29
WARN_NON_NULL_STR (C++ function), 29
WARN_NULL_STR (C++ function), 29
WARN_PROPER_STR (C++ function), 29
WARN_SMALL_CMPLX (C++ function), 29
WARN_SMALL_VAR (C++ function), 29
WARN_WAVE (C++ function), 29

33

	Reference
	What is a Unit Testing Framework?
	Guided Tour
	Basic Structure
	Advanced Usage
	Examples
	Code Documentation

	Index

