Coding Conventions for Igor Pro

Thomas Braun <thomas.braun@byte-physics.de>

4.05.2020
Version: 0.14

1 Procedures

o Allways put code into external procedure files stored directly on disk
e Filenames are built from the characters [A-Za-z_-] and end with .ipf

o The file encoding is OS-dependent but the used charset should always be restricted
to ASCII characters. Code parts exclusively used with Igor Pro 7 or higher should
use UTF-8 as text encoding and specify #pragma TextEncoding = "UTF-8".

o The beginning of each procedure file has #pragma rtGlobals=3 with optional
comment.

o Always use UNIX (LF) end-of-line style

2 Whitespace and Comments

Comments

o Use doxygen for documenting files, functions, macros and constants.
There is an AWK script available to use Igor Pro Files with Doxygen:
https://github.com/byte-physics/doxygen-filter-ipf

e Always add a space before a trailing comment as in

if(a < 0)
b=1

else // positive numbers (including zero)
b = 4711

endif

e Prefer comments on separate lines instead of trailing comments

thomas.braun@byte-physics.de
https://github.com/byte-physics/doxygen-filter-ipf

Doxygen

Use /// to start a doxygen comment and ///< for documentation after the defi-
nition

Align multiple @param arguments and document them in the same order as in the
function signature:

/// @param pressure Pressure of the cell
/// @param temperature Outdoor temperature
/// @param length Length of a soccer field

Function PerformCalculation(pressure, temperature, length)
variable pressure, temperature, length

// code
End

Use in/out specifiers for @param if the function uses call-by-value and call-by-
reference parameters.

/// @param[in] name Name of the device
/// @param[out] type Device type
/// @param[out] number Device number
Function ParseString(name, type, number)
string name
variable &type, &number

// code
End

Optional parameters are documented as

/// @param verbose [optional, default = 0] Verbosely output
/) the steps of the performed calculations
Function DoCalculation([verbose])

variable verbose

// code
End

Whitespace

Every function should be separated by exactly one newline from other code

Indentation is done with tabs, a tab consists of four spaces (in case you are coding
not in Igor Pro).

Comments on separate lines have the same indentation level as the surrounding
code

e Separate function parameters from local variables and local variables from the rest
of the function body by a newline

Function CalculatePressure(weight, size)
variable weight, size

variable i, numEntries

// code
End
e If you are targeting Igor Pro 7 or higher prefer inline parameter declarations as in

Function CalculatePressure(variable weight, variable size)
variable 1, numEntries

// code
End

as that is easier to grasp for newcomers. And also works with multiple-return-value
syntax.
o Add a space around mathematical/binary/comparison operators and assignments,
and add a space after a comma or semicolon
a=b+cx(d+1)/5
if(a < b)
¢ = a2 + b2

end

Make/O/N={1, 2} data

for(i = @; i < numWaves; i += 1)
a = in2
endfor

if(myStatus && myClock)
e = f
endif

o Try to avoid trailing whitespace, here space is _, and tab is -
Good:

Function_.DoStuff()
Jprinto"Hi"

H4if(ac<ob)

A Jeo=ca2.+.bN2
“lend

Make/0/N={1,.2}_.data
End

Bad:

Function_DoStuff().
Iprint_"Hi"_ -
%
Hf(ac<ib)ooan
4 dee=_at2o+.b”2
“Jend.
R
“Make/O/N={1,.2}.data.
End

e Surround blocks like i f/endif, for/endfor, do/while, switch/endswitch,
strswitch/endswitch with a newline if what they express is a logical group of
its own

for(i = @; i < numEntries; i += 1)
// code
endfor

if(a » b)

c =d
elseif(a == b)
c=ce

else
c =20
endif

switch(mode)
case MODE1:
a = "myString"
break
case MODE2:
a = "someOtherString'
break
default:
Abort "unknown mode"
break
endswitch

According to that reasoning the following snippet has no newline before for and
if
numEntries = ItemsInList(list)
for(i = @; i < numEntries; i += 1)
// code
endfor

NVAR num = root: fancyNumber
if(num < 5)

// code
endif

When mutiple end statements match

for(i = @; i < numEntries; i +
// code

1)

if(i < 5)
// code
endif
endfor

you should not add a trailing newline.

There is no whitespace between different flags of an operation and no whitespace
around = if used in a flag assignment.

Good:
Wave/Z/T/SDFR=dfr wv = myWave

Function/S DoStuff()
// code
End

Bad:
Wave /Z /T /SDFR = dfr wv = myWave

The & in a call-by-reference parameter is attached to the name
Good:

Function DoStuff(length, height, weight)
variable &length, &height, &weight

// code
End

Bad:

Function DoStuff(length, height, weight)
variable& length, & height,& weight

// code
End
3 Code
3.1 General

Line length should not exceed 120 characters

Use camelCase for variable/string/wave/dfref names and CamelCase for functions
and structures

Prefer structure-based GUI control procedures over old-style functions
The variables i, j, k, 1 arereserved for loop counters, from outer to inner loops
Use free waves for temporary waves

Prefer generic builtin functions like IndexToScale, DimSize over their 1D coun-
terparts pnt2x, numpnts.

Write your code as much as possible without SetDataFolder. Properly document
if your function expects a certain folder to be the current data folder at the time of
the function call. Always restore the previously active current data folder before
returning from the function.

Although Igor Pro code is case-insensitive use the offical upper/lower case as shown
in the Igor Pro Help files for better readability

Make/N=(10) data

AppendToGraph/W=$graph data

WAVE/Z wv

SVAR sv = abcd

STRUCT Rectangular rect

print ItemsInList(list)

except for the following two cases:
variable storageCount

string name

Variable and function definitions and references to them must also never vary in
case

Don’t use variables for storing the result which is then returned.
Good:

if(someCondition)
// code
return @
else
// code
return 1
endif
// 1f it 1Is important to know that the returned value
// is a status, name the function something like GetStatusForFoo
// and/or use the @return doxygen comment for explaining its meaning

Bad:

variable status
// code

if(someCondition)

// code

status = 0
else

// code

status =1
endif

return status

Avoid commented out code

Don'’t initialize variables and strings if not required and always initialize variables
in their own line.

Good:

variable i =1

variable numEntries, maxlLength
string list

Bad:

variable i = 0
string list =

, numEntries = ItemsInList(list), maxLength

nn

Don’t use the default value for an optional argument

Good:

StringFromList(@, list)

Bad:

StringFromList(@, list, ";")

e Use parentheses sparingly
Good:

variable a = b x (1 + 2)

if(a <b || a < c)
// code

endif
Bad:

variable a = (b x (1 + 2))

if((a < b) Il (a < c))
// code
endif
e Use parentheses when combining operators with the same precedence
Good:

if((A |l B) && C)
// code
endif

if(A == (B »=C))
// code
endif

Bad:

if(A || B && C) // same as above as these are left to right
// code
endif

if(A == B >= C) // same as above as these are right to left
// code
endif

The reason is that remembering the exact associativity is too error-prone. See also

DisplayHelpTopic "Operators".

e Always add a space after ; when multiple statements are written in one line. But
in general this should be avoided if possible.

o With try/catch always clear runtime errors twice
try
err = getRTError(1)
WAVE wv = I_DONT_EXIST; AbortOnRTE
catch

err = getRTError (1)
// handle error
endtry

If you don’t clear it after try any still lingering runtime error will trigger an abort
via AbortOnRTE and that results in difficult to diagnose bugs.

e Don’t mix $ with other expressions as it makes the code too hard to read
Bad:

WAVE/Z wv = root:$(str + "_suffix")
Good:

string folder = str + "_suffix"
WAVE/Z wv = root:$folder

The reason for this rule is that it makes the code easier to grasp, see
DisplayHelpTopic "$ Precedence Issues In Commands" for the details how
$ works in complex expressions.

e Always add break statements in each branch of switch/strswitch statements.
If you intentionally fallthrough mark that by an explicit comment.

switch(state)
case STATE_A:
// do something
break
case STATE_B:
// something else
break
caste STATE_C: // fallthrough-by-design
caste STATE_D:
// another thing

break
default:
// do nothing
break
endswitch
3.2 Waves
¢ In multidimensional wave assignments always specify the exact dimension for each
value:
Make/N=(1,1,2) data = NaN
data[@][@][] = ©@

In this example data will be set to @ for both values. Each dimension is specified:
p and q are fixed to @ and both values in dimension r are set to Q.

Make/N=(1,1,2) data = NaN
data[@] [@] = ©

In this example the output will be @ and NaN when using Igor Pro 7 (IP7). In Igor
Pro 6 (IP6) the assignement will result in @ for both values.
The IP6 behaviour can be triggered in IP7 by setting an Igor Option:

SetIgorOption FuncOptimize, WaveEgn = 1

To avoid confusing code always specify what value should go in which dimension
(row, column, layer, chunk).

3.3 Constants

e Static constants, which are required only in one file, should be defined at the top
of the file

e Global constants are named with all caps and underlines and are collated in a
single file

o Explain magic numbers in a comment

static Constant DEFAULT_WAVE_SIZE = 128 // equals 278 which is
// the width of the DAC signal

3.4 Macros

o Use Macros only for window recreation macros

e Try to avoid changing window recreation macros by hand. Write instead a function
to reset the panel to the default state and let Igor Pro rewrite the macro by
DoWindow/R.

3.5 Functions

o Try to keep their length below 50 lines (or half the screen height)

o Use CamelCase for function names (optionally prefixed by SomeString_ denoting
the filename)

e Make them static if they are only required inside the same procedure file

¢ Define all variables at the top of the function body as in

Function CalculatePressure(weight, size)
variable weight, size

variable i, numEntries

10

// code
End

The reason for this rule is that there is no block-scope in Igor Pro, i.e.

if(someCondition)
variable a = 4711
end

print a

is valid code. And that certainly will confuse people coming from C/C++.
Please also note that in the example above a blank line separates function argument
definitions from general variable definitions. This will improve readability.

Optional arguments should have defined default values:

Function DoCalculation(input, [verbose])
variable input, verbose

if(ParamlIsDefault(verbose))
verbose = 0
endif

// code
End
Function Call with optional arguments:
DoCalculation(41, .verbose.=.1)

When calling a function, each argument is separated by a comma followed by a
whitespace. Optional arguments are set with surrounding white spaces before and
after the equal sign.

Boolean optional arguments should be forced to (0,1)

Function DoCalculation([overwrite])
variable overwrite

overwrite = ParamlIsDefault(overwrite) ? @ : !loverwrite
if(overwrite)
// Some Code

endif

if(loverwrite)
// Negation will work as expected

11

endif
End

The reason for this rule is that possibly unexpected behaviour should always be
avoided. Without the double negation statement neither one of the above if state-
ments would get triggered if overwrite=NaN.

To make this clear look at the following example: The function will print 2 as NaN
can not get evaluated.

Function NaNisNotBool()
if(NaN)
print @
elseif(!NaN)
print 1
else
print 2
endif
End

If you don’t care about a function result, return NaN/""/$""

Function Dostuff()

if(!isSomethingToDo())
return NaN
endif

// code
End

The reason for this rule is that it makes the code easier to understand as these are
the default return values (without multiple-return-value syntax) used by Igor Pro.
Set pass-by-reference parameters to a save default value immediately at the begin-
ning of the function

Function Dostuff(param)
variable ¶m

param = NaN
if(!isSomethingToDo())
return NaN

endif

// code
End

12

The reason is that all function return paths should return well-defined values in
the returned pass-by-reference parameters. If the passed parameter is a structure,
write a structure initialization function to handle setting it to a safe default.

o Be aware of the different initial values for return values when using multiple-return-
value syntax.

Function [variable var] New()
// code
End

Function 01d()
// code
End

The function New() returns @.0 whereas 01d() returns NaN.

4 Links and Literature
e ASCII: https://en.wikipedia.org/wiki/ASCII
e Doxygen: http://www.stack.nl/~dimitri/doxygen/index.html
e Git settings for Igor Pro code: http://www.igorexchange.com/node/6013

e Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
Prentice Hall (2008)

e How to write good commit messages: http://who-t.blogspot.de/2009/12/
on-commit-messages.html

13

https://en.wikipedia.org/wiki/ASCII
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.igorexchange.com/node/6013
http://who-t.blogspot.de/2009/12/on-commit-messages.html
http://who-t.blogspot.de/2009/12/on-commit-messages.html

	Procedures
	Whitespace and Comments
	Code
	General
	Waves
	Constants
	Macros
	Functions

	Links and Literature

