### Inverse Cumulative Distribution Functions

The inverse cumulative distribution functions return the values at which their respective CDFs attain a given level. This value is typically used in hypothesis testing as a critical value.

There are very few functions for which the inverse CDF can be written in closed form. In most situations the inverse is computed numerically from the CDF.

 Function Distribution StatsInvBetaCDF Beta StatsInvBinomialCDF Binomial StatsInvCauchyCDF Cauchy StatsInvChiCDF Chi-squared StatsInvCMSSDCDF C (mean square successive difference) StatsInvDExpCDF Double-exponential StatsInvEValueCDF Extreme-value (type I Gumble) StatsInvExpCDF Exponential StatsInvFCDF F StatsInvFriedmanCDF Friedman StatsInvGammaCDF Gamma StatsInvGeometricCDF Geometric StatsInvKuiperCDF Kuiper StatsInvLogisticCDF Logistic StatsInvLogNormalCDF Lognormal StatsInvMaxwellCDF Maxwell StatsInvMooreCDF Moore StatsInvNBinomialCDF Negative-binomial StatsInvNCFCDF Non-central F StatsInvNormalCDF Normal (Gaussian) StatsInvParetoCDF Pareto StatsInvPoissonCDF Poisson StatsInvPowerCDF Power StatsInvQCDF Q StatsInvQpCDF Modified Q StatsInvRayleighCDF Rayleigh StatsInvRectangularCDF Uniform StatsInvSpearmanCDF Spearman rho StatsInvStudentCDF Student-T StatsInvTopDownCDF Top Down StatsInvTriangularCDF Triangular StatsInvUSquaredCDF Watson's U-squared StatsInvVonMisesCDF von Mises StatsInvWeibullCDF Weibull