### Inverse Cumulative Distribution Functions

The inverse cumulative distribution functions return the values at which their respective CDFs attain a given level. This value is typically used in hypothesis testing as a critical value.

There are very few functions for which the inverse CDF can be written in closed form. In most situations the inverse is computed numerically from the CDF.

Function | Distribution |

StatsInvBetaCDF | Beta |

StatsInvBinomialCDF | Binomial |

StatsInvCauchyCDF | Cauchy |

StatsInvChiCDF | Chi-squared |

StatsInvCMSSDCDF | C (mean square successive difference) |

StatsInvDExpCDF | Double-exponential |

StatsInvEValueCDF | Extreme-value (type I Gumble) |

StatsInvExpCDF | Exponential |

StatsInvFCDF | F |

StatsInvFriedmanCDF | Friedman |

StatsInvGammaCDF | Gamma |

StatsInvGeometricCDF | Geometric |

StatsInvKuiperCDF | Kuiper |

StatsInvLogisticCDF | Logistic |

StatsInvLogNormalCDF | Lognormal |

StatsInvMaxwellCDF | Maxwell |

StatsInvMooreCDF | Moore |

StatsInvNBinomialCDF | Negative-binomial |

StatsInvNCFCDF | Non-central F |

StatsInvNormalCDF | Normal (Gaussian) |

StatsInvParetoCDF | Pareto |

StatsInvPoissonCDF | Poisson |

StatsInvPowerCDF | Power |

StatsInvQCDF | Q |

StatsInvQpCDF | Modified Q |

StatsInvRayleighCDF | Rayleigh |

StatsInvRectangularCDF | Uniform |

StatsInvSpearmanCDF | Spearman rho |

StatsInvStudentCDF | Student-T |

StatsInvTopDownCDF | Top Down |

StatsInvTriangularCDF | Triangular |

StatsInvUSquaredCDF | Watson's U-squared |

StatsInvVonMisesCDF | von Mises |

StatsInvWeibullCDF | Weibull |