The inverse cumulative distribution functions return the values at which their respective CDFs attain a given level. This value is typically used in hypothesis testing as a critical value.
There are very few functions for which the inverse CDF can be written in closed form. In most situations the inverse is computed numerically from the CDF.
| Function | Distribution |
| StatsInvBetaCDF | Beta |
| StatsInvBinomialCDF | Binomial |
| StatsInvCauchyCDF | Cauchy |
| StatsInvChiCDF | Chi-squared |
| StatsInvCMSSDCDF | C (mean square successive difference) |
| StatsInvDExpCDF | Double-exponential |
| StatsInvEValueCDF | Extreme-value (type I Gumble) |
| StatsInvExpCDF | Exponential |
| StatsInvFCDF | F |
| StatsInvFriedmanCDF | Friedman |
| StatsInvGammaCDF | Gamma |
| StatsInvGeometricCDF | Geometric |
| StatsInvKuiperCDF | Kuiper |
| StatsInvLogisticCDF | Logistic |
| StatsInvLogNormalCDF | Lognormal |
| StatsInvMaxwellCDF | Maxwell |
| StatsInvMooreCDF | Moore |
| StatsInvNBinomialCDF | Negative-binomial |
| StatsInvNCFCDF | Non-central F |
| StatsInvNormalCDF | Normal (Gaussian) |
| StatsInvParetoCDF | Pareto |
| StatsInvPoissonCDF | Poisson |
| StatsInvPowerCDF | Power |
| StatsInvQCDF | Q |
| StatsInvQpCDF | Modified Q |
| StatsInvRayleighCDF | Rayleigh |
| StatsInvRectangularCDF | Uniform |
| StatsInvSpearmanCDF | Spearman rho |
| StatsInvStudentCDF | Student-T |
| StatsInvTopDownCDF | Top Down |
| StatsInvTriangularCDF | Triangular |
| StatsInvUSquaredCDF | Watson's U-squared |
| StatsInvVonMisesCDF | von Mises |
| StatsInvWeibullCDF | Weibull |
Forum
Support
Gallery
Igor Pro 10
Learn More
Igor XOP Toolkit
Learn More
Igor NIDAQ Tools MX
Learn More